Chaos Near Resonance

Chaos Near Resonance PDF Author: G. Haller
Publisher: Springer Science & Business Media
ISBN: 1461215080
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
A unified treatment of resonant problems with special emphasis on the recently discovered phenomenon of homoclinic jumping. After a survey of the necessary background, the book develops a general finite dimensional theory of homoclinic jumping, illustrating it with examples. The main mechanism of chaos near resonances is discussed in both the dissipative and the Hamiltonian context, incorporating previously unpublished new results on universal homoclinic bifurcations near resonances, as well as on multi-pulse Silnikov manifolds. The results are applied to a variety of different problems, which include applications from beam oscillations, surface wave dynamics, nonlinear optics, atmospheric science and fluid mechanics.

Chaos Near Resonance

Chaos Near Resonance PDF Author: G. Haller
Publisher: Springer Science & Business Media
ISBN: 1461215080
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
A unified treatment of resonant problems with special emphasis on the recently discovered phenomenon of homoclinic jumping. After a survey of the necessary background, the book develops a general finite dimensional theory of homoclinic jumping, illustrating it with examples. The main mechanism of chaos near resonances is discussed in both the dissipative and the Hamiltonian context, incorporating previously unpublished new results on universal homoclinic bifurcations near resonances, as well as on multi-pulse Silnikov manifolds. The results are applied to a variety of different problems, which include applications from beam oscillations, surface wave dynamics, nonlinear optics, atmospheric science and fluid mechanics.

Chaos in Chemistry and Biochemistry

Chaos in Chemistry and Biochemistry PDF Author: Richard J. Field
Publisher: World Scientific
ISBN: 9789810210243
Category : Science
Languages : en
Pages : 318

Get Book Here

Book Description
True deterministic chaos is characterized by unpredictable, apparently random motion in a dynamical system completely described by a deterministic dynamic law, usually a nonlinear differential equation, with no stochastic component. The inability to predict future behavior of a chaotic system occurs because trajectories evolving from arbitrarily close initial conditions diverge. Chaos is universal as it may arise in any system governed by one of a class of quite common, suitable nonlinear dynamic laws. This book discusses both the experimental observation and theoretical interpretation of chaos in chemical and biochemical systems. Examples are drawn from the Belousov-Zhabotinsky reaction, surface reactions, electrochemical reactions, enzyme reactions, and periodically perturbed oscillating systems.

Normal Forms and Homoclinic Chaos

Normal Forms and Homoclinic Chaos PDF Author: William F. Langford
Publisher: American Mathematical Soc.
ISBN: 0821803263
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
This volume presents new research on normal forms, symmetry, homoclinic cycles, and chaos, from the Workshop on Normal Forms and Homoclinic Chaos held during The Fields Institute Program Year on Dynamical Systems and Bifurcation Theory in November 1992, in Waterloo, Canada. The workshop bridged the local and global analysis of dynamical systems with emphasis on normal forms and the recently discovered homoclinic cycles which may arise in normal forms.

Bifurcations in Hamiltonian Systems

Bifurcations in Hamiltonian Systems PDF Author: Henk Broer
Publisher: Springer
ISBN: 354036398X
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
The authors consider applications of singularity theory and computer algebra to bifurcations of Hamiltonian dynamical systems. They restrict themselves to the case were the following simplification is possible. Near the equilibrium or (quasi-) periodic solution under consideration the linear part allows approximation by a normalized Hamiltonian system with a torus symmetry. It is assumed that reduction by this symmetry leads to a system with one degree of freedom. The volume focuses on two such reduction methods, the planar reduction (or polar coordinates) method and the reduction by the energy momentum mapping. The one-degree-of-freedom system then is tackled by singularity theory, where computer algebra, in particular, Gröbner basis techniques, are applied. The readership addressed consists of advanced graduate students and researchers in dynamical systems.

Normally Hyperbolic Invariant Manifolds in Dynamical Systems

Normally Hyperbolic Invariant Manifolds in Dynamical Systems PDF Author: Stephen Wiggins
Publisher: Springer Science & Business Media
ISBN: 1461243122
Category : Mathematics
Languages : en
Pages : 198

Get Book Here

Book Description
In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.

The Arnoldfest

The Arnoldfest PDF Author: Vladimir Igorevich Arnolʹd
Publisher: American Mathematical Soc.
ISBN: 0821809458
Category : Mathematics
Languages : en
Pages : 575

Get Book Here

Book Description
This volume presents articles originating from invited talks at an exciting international conference held at The Fields Institute in Toronto celebrating the sixtieth birthday of the renowned mathematician, Vladimir Arnold. Experts from the world over--including several from "Arnold's school"--gave illuminating talks and lively poster sessions. The presentations focused on Arnold's main areas of interest: singularity theory, the theory of curves, symmetry groups, dynamical systems, mechanics, and related areas of mathematics. The book begins with notes of three lectures by V. Arnold given in the framework of the Institute's Distinguished Lecturer program. The topics of the lectures are: (1) From Hilbert's Superposition Problem to Dynamical Systems (2) Symplectization, Complexification, and Mathematical Trinities (3) Topological Problems in Wave Propagation Theory and Topological Economy Principle in Algebraic Geometry. Arnold's three articles include insightful comments on Russian and Western mathematics and science. Complementing the first is Jurgen Moser's "Recollections", concerning some of the history of KAM theory.

Symplectic and Contact Topology

Symplectic and Contact Topology PDF Author: Y. Eliashberg
Publisher: American Mathematical Soc.
ISBN: 9780821871416
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
The papers presented in this volume are written by participants of the ''Symplectic and Contact Topology, Quantum Cohomology, and Symplectic Field Theory'' symposium. The workshop was part of a semester-long joint venture of The Fields Institute in Toronto and the Centre de Recherches Mathematiques in Montreal. The twelve papers cover the following topics: Symplectic Topology, the interaction between symplectic and other geometric structures, and Differential Geometry and Topology. The Proceeding concludes with two papers that have a more algebraic character. One is related to the program of Homological Mirror Symmetry: the author defines a category of extended complex manifolds and studies its properties. The subject of the final paper is Non-commutative Symplectic Geometry, in particular the structure of the symplectomorphism group of a non-commutative complex plane. The in-depth articles make this book a useful reference for graduate students as well as research mathematicians.

Stable and Unstable Homotopy

Stable and Unstable Homotopy PDF Author: William G. Dwyer
Publisher: American Mathematical Soc.
ISBN: 0821808249
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
This volume presents the proceedings of workshops on stable homotopy theory and on unstable homotopy theory held at The Field Institute as part of the homotopy program for the year 1996. The papers in the volume describe current research in the subject, and all included works were refereed. Rather than being a summary of work to be published elsewhere, each paper is the unique source for the new material it contains. The book contains current research from international experts in the subject area, and presents open problems with directions for future research.

Singularity Theory: Dedicated To Jean-paul Brasselet On His 60th Birthday - Proceedings Of The 2005 Marseille Singularity School And Conference

Singularity Theory: Dedicated To Jean-paul Brasselet On His 60th Birthday - Proceedings Of The 2005 Marseille Singularity School And Conference PDF Author: Jean-paul Brasselet
Publisher: World Scientific
ISBN: 9814476390
Category : Mathematics
Languages : en
Pages : 1083

Get Book Here

Book Description
The Singularity School and Conference took place in Luminy, Marseille, from January 24th to February 25th 2005. More than 180 mathematicians from over 30 countries converged to discuss recent developments in singularity theory.The volume contains the elementary and advanced courses conducted by singularities specialists during the conference, general lectures on singularity theory, and lectures on applications of the theory to various domains. The subjects range from geometry and topology of singularities, through real and complex singularities, to applications of singularities.

Special Functions, $q$-Series and Related Topics

Special Functions, $q$-Series and Related Topics PDF Author: Mourad Ismail
Publisher: American Mathematical Soc.
ISBN: 082180524X
Category : Mathematics
Languages : en
Pages : 289

Get Book Here

Book Description
This book contains contributions from the proceedings at The Fields Institute workshop on Special Functions, q-Series and Related Topics that was held in June 1995. The articles cover areas from quantum groups and their representations, multivariate special functions, q-series, and symbolic algebra techniques as well as the traditional areas of single-variable special functions. The book contains both pure and applied topics and reflects recent trends of research in the various areas of special functions.