Normal Forms and Bifurcation of Planar Vector Fields

Normal Forms and Bifurcation of Planar Vector Fields PDF Author: Shui-Nee Chow
Publisher: Cambridge University Press
ISBN: 0521372267
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary.

Normal Forms and Bifurcation of Planar Vector Fields

Normal Forms and Bifurcation of Planar Vector Fields PDF Author: Shui-Nee Chow
Publisher: Cambridge University Press
ISBN: 0521372267
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary.

Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem

Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem PDF Author: Robert Roussarie
Publisher: Springer Science & Business Media
ISBN: 303480718X
Category : Mathematics
Languages : en
Pages : 215

Get Book Here

Book Description
In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - The book as a whole is a well-balanced exposition that can be recommended to all those who want to gain a thorough understanding and proficiency in the recently developed methods. The book, reflecting the current state of the art, can also be used for teaching special courses. (Mathematical Reviews)

Bifurcations of Planar Vector Fields

Bifurcations of Planar Vector Fields PDF Author: Jean-Pierre Francoise
Publisher: Springer
ISBN: 354046722X
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description


Bifurcations of Planar Vector Fields

Bifurcations of Planar Vector Fields PDF Author: Freddy Dumortier
Publisher:
ISBN: 9783662191552
Category :
Languages : en
Pages : 240

Get Book Here

Book Description


Bifurcations of Planar Vector Fields

Bifurcations of Planar Vector Fields PDF Author: Freddy Dumortier
Publisher: Springer
ISBN: 3540384332
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
The book reports on recent work by the authors on the bifurcation structure of singular points of planar vector fields whose linear parts are nilpotent. The bifurcation diagrams of the most important codimension-three cases are studied in detail. The results presented reach the limits of what is currently known on the bifurcation theory of planar vector fields. While the treatment is geometric, special analytical tools using abelian integrals are needed, and are explicitly developed. The rescaling and normalization methods are improved for application here. The reader is assumed to be familiar with the elements of Bifurcation and Dynamical Systems Theory. The book is addressed to researchers and graduate students working in Ordinary Differential Equations and Dynamical Systems, as well as anyone modelling complex multiparametric phenomena.

Bifurcations and Periodic Orbits of Vector Fields

Bifurcations and Periodic Orbits of Vector Fields PDF Author: Dana Schlomiuk
Publisher: Springer Science & Business Media
ISBN: 9780792323921
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields". This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work.

Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem

Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem PDF Author: Robert H. Roussarie
Publisher: Birkhauser
ISBN:
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations.

Singularity Theory: Dedicated To Jean-paul Brasselet On His 60th Birthday - Proceedings Of The 2005 Marseille Singularity School And Conference

Singularity Theory: Dedicated To Jean-paul Brasselet On His 60th Birthday - Proceedings Of The 2005 Marseille Singularity School And Conference PDF Author: Jean-paul Brasselet
Publisher: World Scientific
ISBN: 9814476390
Category : Mathematics
Languages : en
Pages : 1083

Get Book Here

Book Description
The Singularity School and Conference took place in Luminy, Marseille, from January 24th to February 25th 2005. More than 180 mathematicians from over 30 countries converged to discuss recent developments in singularity theory.The volume contains the elementary and advanced courses conducted by singularities specialists during the conference, general lectures on singularity theory, and lectures on applications of the theory to various domains. The subjects range from geometry and topology of singularities, through real and complex singularities, to applications of singularities.

Qualitative Theory of Planar Differential Systems

Qualitative Theory of Planar Differential Systems PDF Author: Freddy Dumortier
Publisher: Springer Science & Business Media
ISBN: 3540329021
Category : Mathematics
Languages : en
Pages : 309

Get Book Here

Book Description
This book deals with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems.

Bifurcations and Periodic Orbits of Vector Fields

Bifurcations and Periodic Orbits of Vector Fields PDF Author: Dana Schlomiuk
Publisher: Springer Science & Business Media
ISBN: 9401582386
Category : Mathematics
Languages : en
Pages : 483

Get Book Here

Book Description
The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields". This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work.