Author: C. Milas
Publisher: Emerald Group Publishing
ISBN: 044451838X
Category : Business & Economics
Languages : en
Pages : 461
Book Description
This volume of Contributions to Economic Analysis addresses a number of important questions in the field of business cycles including: How should business cycles be dated and measured? What is the response of output and employment to oil-price and monetary shocks? And, is the business cycle asymmetric, and does it matter?
Nonlinear Time Series Analysis of Business Cycles
Author: C. Milas
Publisher: Emerald Group Publishing
ISBN: 044451838X
Category : Business & Economics
Languages : en
Pages : 461
Book Description
This volume of Contributions to Economic Analysis addresses a number of important questions in the field of business cycles including: How should business cycles be dated and measured? What is the response of output and employment to oil-price and monetary shocks? And, is the business cycle asymmetric, and does it matter?
Publisher: Emerald Group Publishing
ISBN: 044451838X
Category : Business & Economics
Languages : en
Pages : 461
Book Description
This volume of Contributions to Economic Analysis addresses a number of important questions in the field of business cycles including: How should business cycles be dated and measured? What is the response of output and employment to oil-price and monetary shocks? And, is the business cycle asymmetric, and does it matter?
Nonlinear Time Series Analysis of Economic and Financial Data
Author: Philip Rothman
Publisher: Springer Science & Business Media
ISBN: 1461551293
Category : Business & Economics
Languages : en
Pages : 379
Book Description
Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.
Publisher: Springer Science & Business Media
ISBN: 1461551293
Category : Business & Economics
Languages : en
Pages : 379
Book Description
Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.
Nonlinear Time Series Analysis of Economic and Financial Data
Author: Philip Rothman
Publisher: Springer Science & Business Media
ISBN: 0792383796
Category : Business & Economics
Languages : en
Pages : 394
Book Description
Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.
Publisher: Springer Science & Business Media
ISBN: 0792383796
Category : Business & Economics
Languages : en
Pages : 394
Book Description
Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.
Nonlinear Time Series Analysis
Author: Ruey S. Tsay
Publisher: John Wiley & Sons
ISBN: 1119264065
Category : Mathematics
Languages : en
Pages : 516
Book Description
A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Publisher: John Wiley & Sons
ISBN: 1119264065
Category : Mathematics
Languages : en
Pages : 516
Book Description
A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Applied Nonlinear Time Series Analysis: Applications In Physics, Physiology And Finance
Author: Michael Small
Publisher: World Scientific
ISBN: 981448122X
Category : Science
Languages : en
Pages : 261
Book Description
Nonlinear time series methods have developed rapidly over a quarter of a century and have reached an advanced state of maturity during the last decade. Implementations of these methods for experimental data are now widely accepted and fairly routine; however, genuinely useful applications remain rare. This book focuses on the practice of applying these methods to solve real problems.To illustrate the usefulness of these methods, a wide variety of physical and physiological systems are considered. The technical tools utilized in this book fall into three distinct, but interconnected areas: quantitative measures of nonlinear dynamics, Monte-Carlo statistical hypothesis testing, and nonlinear modeling. Ten highly detailed applications serve as case studies of fruitful applications and illustrate the mathematical techniques described in the text.
Publisher: World Scientific
ISBN: 981448122X
Category : Science
Languages : en
Pages : 261
Book Description
Nonlinear time series methods have developed rapidly over a quarter of a century and have reached an advanced state of maturity during the last decade. Implementations of these methods for experimental data are now widely accepted and fairly routine; however, genuinely useful applications remain rare. This book focuses on the practice of applying these methods to solve real problems.To illustrate the usefulness of these methods, a wide variety of physical and physiological systems are considered. The technical tools utilized in this book fall into three distinct, but interconnected areas: quantitative measures of nonlinear dynamics, Monte-Carlo statistical hypothesis testing, and nonlinear modeling. Ten highly detailed applications serve as case studies of fruitful applications and illustrate the mathematical techniques described in the text.
Threshold Models in Non-linear Time Series Analysis
Author: H. Tong
Publisher: Springer Science & Business Media
ISBN: 1468478885
Category : Mathematics
Languages : en
Pages : 333
Book Description
In the last two years or so, I was most fortunate in being given opportunities of lecturing on a new methodology to a variety of audiences in Britain, China, Finland, France and Spain. Despite my almost Confucian attitude of preferring talking (i.e. a transient record) to writing (i.e. a permanent record), the warm encouragement of friends has led to the ensuing notes. I am also only too conscious of the infancy of the methodology introduced in these notes. However, it is my sincere hope that exposure to a wider audience will accelerate its maturity. Readers are assumed to be familiar with the basic theory of time series analysis. The book by Professor M.B. Priestley (1981) may be used as a general reference. Chapter One is addressed to the general question: "why do we need non-linear time series models?" After describing some significant advantages of linear models, it singles out several major limitations of linearity. Of course, the selection reflects my personal view on the subject, which is only at its very beginning, although there does seem to be a general agreement in the literature that time irr'eversibility and limit cycles are among the most obvious.
Publisher: Springer Science & Business Media
ISBN: 1468478885
Category : Mathematics
Languages : en
Pages : 333
Book Description
In the last two years or so, I was most fortunate in being given opportunities of lecturing on a new methodology to a variety of audiences in Britain, China, Finland, France and Spain. Despite my almost Confucian attitude of preferring talking (i.e. a transient record) to writing (i.e. a permanent record), the warm encouragement of friends has led to the ensuing notes. I am also only too conscious of the infancy of the methodology introduced in these notes. However, it is my sincere hope that exposure to a wider audience will accelerate its maturity. Readers are assumed to be familiar with the basic theory of time series analysis. The book by Professor M.B. Priestley (1981) may be used as a general reference. Chapter One is addressed to the general question: "why do we need non-linear time series models?" After describing some significant advantages of linear models, it singles out several major limitations of linearity. Of course, the selection reflects my personal view on the subject, which is only at its very beginning, although there does seem to be a general agreement in the literature that time irr'eversibility and limit cycles are among the most obvious.
Complex Systems in Finance and Econometrics
Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1441977007
Category : Business & Economics
Languages : en
Pages : 919
Book Description
Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.
Publisher: Springer Science & Business Media
ISBN: 1441977007
Category : Business & Economics
Languages : en
Pages : 919
Book Description
Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.
Elements of Nonlinear Time Series Analysis and Forecasting
Author: Jan G. De Gooijer
Publisher: Springer
ISBN: 3319432524
Category : Mathematics
Languages : en
Pages : 626
Book Description
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Publisher: Springer
ISBN: 3319432524
Category : Mathematics
Languages : en
Pages : 626
Book Description
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
A Nonlinear Time Series Workshop
Author: Douglas M. Patterson
Publisher: Springer Science & Business Media
ISBN: 144198688X
Category : Business & Economics
Languages : en
Pages : 205
Book Description
The complex dynamic behavior exhibited by many nonlinear systems - chaos, episodic volatility bursts, stochastic regimes switching - has attracted a good deal of attention in recent years. A Nonlinear Time Series Workshop provides the reader with both the statistical background and the software tools necessary for detecting nonlinear behavior in time series data. The most useful existing detection techniques are described, including Engle's LaGrange Multiplier test for conditional hetero-skedasticity and tests based on the correlation dimension and on the estimated bispectrum. These techniques are illustrated using actual data from fields such as economics, finance, engineering, and geophysics.
Publisher: Springer Science & Business Media
ISBN: 144198688X
Category : Business & Economics
Languages : en
Pages : 205
Book Description
The complex dynamic behavior exhibited by many nonlinear systems - chaos, episodic volatility bursts, stochastic regimes switching - has attracted a good deal of attention in recent years. A Nonlinear Time Series Workshop provides the reader with both the statistical background and the software tools necessary for detecting nonlinear behavior in time series data. The most useful existing detection techniques are described, including Engle's LaGrange Multiplier test for conditional hetero-skedasticity and tests based on the correlation dimension and on the estimated bispectrum. These techniques are illustrated using actual data from fields such as economics, finance, engineering, and geophysics.
Business Cycles: Theory and Empirical Methods
Author: Willi Semmler
Publisher: Springer Science & Business Media
ISBN: 9401113645
Category : Business & Economics
Languages : en
Pages : 404
Book Description
In macrodynamics and business cycle analysis we find nowadays a variety of approaches elaborating frameworks for studying the fluctuations in economic and financial data. These approaches are viewed from Keynesian, monetarist and rational expectations standpoints. There are now also numerous empirical methods for the testing of nonlinear data generating mechanisms. This volume brings together a selection of contributions on theories of the business cycle and new empirical methods and synopsizes the new results. The volume (i) gives an overview of current models and modern concepts and tools for analyzing the business cycle; (ii) demonstrates, where possible, the relation of those models to the history of business cycle analysis; and (iii) presents current work, surveys and original work, on new empirical methods of studying cycle generating mechanisms.
Publisher: Springer Science & Business Media
ISBN: 9401113645
Category : Business & Economics
Languages : en
Pages : 404
Book Description
In macrodynamics and business cycle analysis we find nowadays a variety of approaches elaborating frameworks for studying the fluctuations in economic and financial data. These approaches are viewed from Keynesian, monetarist and rational expectations standpoints. There are now also numerous empirical methods for the testing of nonlinear data generating mechanisms. This volume brings together a selection of contributions on theories of the business cycle and new empirical methods and synopsizes the new results. The volume (i) gives an overview of current models and modern concepts and tools for analyzing the business cycle; (ii) demonstrates, where possible, the relation of those models to the history of business cycle analysis; and (iii) presents current work, surveys and original work, on new empirical methods of studying cycle generating mechanisms.