Author: Jurgen Appell
Publisher: Cambridge University Press
ISBN: 0521361028
Category : Mathematics
Languages : en
Pages : 0
Book Description
Aiming to present a self-contained account of the present state of knowledge of the theory of the non-linear superposition operators - a generalization of the notion of functions - this book diverges from classical nonlinear analysis and is applicable to operators in a variety of function spaces.
Nonlinear Superposition Operators
Author: Jurgen Appell
Publisher: Cambridge University Press
ISBN: 0521361028
Category : Mathematics
Languages : en
Pages : 0
Book Description
Aiming to present a self-contained account of the present state of knowledge of the theory of the non-linear superposition operators - a generalization of the notion of functions - this book diverges from classical nonlinear analysis and is applicable to operators in a variety of function spaces.
Publisher: Cambridge University Press
ISBN: 0521361028
Category : Mathematics
Languages : en
Pages : 0
Book Description
Aiming to present a self-contained account of the present state of knowledge of the theory of the non-linear superposition operators - a generalization of the notion of functions - this book diverges from classical nonlinear analysis and is applicable to operators in a variety of function spaces.
Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations
Author: Thomas Runst
Publisher: Walter de Gruyter
ISBN: 311081241X
Category : Mathematics
Languages : en
Pages : 561
Book Description
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.
Publisher: Walter de Gruyter
ISBN: 311081241X
Category : Mathematics
Languages : en
Pages : 561
Book Description
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.
An Introduction to Nonlinear Analysis and Fixed Point Theory
Author: Hemant Kumar Pathak
Publisher: Springer
ISBN: 9811088667
Category : Mathematics
Languages : en
Pages : 845
Book Description
This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in diverse applied fields. It is intended for graduate and undergraduate students of mathematics and engineering who are familiar with discrete mathematical structures, differential and integral equations, operator theory, measure theory, Banach and Hilbert spaces, locally convex topological vector spaces, and linear functional analysis.
Publisher: Springer
ISBN: 9811088667
Category : Mathematics
Languages : en
Pages : 845
Book Description
This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in diverse applied fields. It is intended for graduate and undergraduate students of mathematics and engineering who are familiar with discrete mathematical structures, differential and integral equations, operator theory, measure theory, Banach and Hilbert spaces, locally convex topological vector spaces, and linear functional analysis.
Recent Advances in Operator-Related Function Theory
Author: Alec L. Matheson
Publisher: American Mathematical Soc.
ISBN: 082183925X
Category : Mathematics
Languages : en
Pages : 230
Book Description
The articles in this book are based on talks at a conference devoted to interrelations between function theory and the theory of operators. The main theme of the book is the role of Alexandrov-Clark measures. Two of the articles provide the introduction to the theory of Alexandrov-Clark measures and to its applications in the spectral theory of linear operators. The remaining articles deal with recent results in specific directions related to the theme of the book.
Publisher: American Mathematical Soc.
ISBN: 082183925X
Category : Mathematics
Languages : en
Pages : 230
Book Description
The articles in this book are based on talks at a conference devoted to interrelations between function theory and the theory of operators. The main theme of the book is the role of Alexandrov-Clark measures. Two of the articles provide the introduction to the theory of Alexandrov-Clark measures and to its applications in the spectral theory of linear operators. The remaining articles deal with recent results in specific directions related to the theme of the book.
Harmonic Analysis and Operator Theory
Author: Stefania A. M. Marcantognini
Publisher: American Mathematical Soc.
ISBN: 0821803042
Category : Mathematics
Languages : en
Pages : 528
Book Description
The collection covers a broad spectrum of topics, including: wavelet analysis, Haenkel operators, multimeasure theory, the boundary behavior of the Bergman kernel, interpolation theory, and Cotlar's Lemma on almost orthogonality in the context of L[superscript p] spaces and more...
Publisher: American Mathematical Soc.
ISBN: 0821803042
Category : Mathematics
Languages : en
Pages : 528
Book Description
The collection covers a broad spectrum of topics, including: wavelet analysis, Haenkel operators, multimeasure theory, the boundary behavior of the Bergman kernel, interpolation theory, and Cotlar's Lemma on almost orthogonality in the context of L[superscript p] spaces and more...
Operator and Norm Inequalities and Related Topics
Author: Richard M. Aron
Publisher: Springer Nature
ISBN: 3031021045
Category : Mathematics
Languages : en
Pages : 822
Book Description
Inequalities play a central role in mathematics with various applications in other disciplines. The main goal of this contributed volume is to present several important matrix, operator, and norm inequalities in a systematic and self-contained fashion. Some powerful methods are used to provide significant mathematical inequalities in functional analysis, operator theory and numerous fields in recent decades. Some chapters are devoted to giving a series of new characterizations of operator monotone functions and some others explore inequalities connected to log-majorization, relative operator entropy, and the Ando-Hiai inequality. Several chapters are focused on Birkhoff–James orthogonality and approximate orthogonality in Banach spaces and operator algebras such as C*-algebras from historical perspectives to current development. A comprehensive account of the boundedness, compactness, and restrictions of Toeplitz operators can be found in the book. Furthermore, an overview of the Bishop-Phelps-Bollobás theorem is provided. The state-of-the-art of Hardy-Littlewood inequalities in sequence spaces is given. The chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
Publisher: Springer Nature
ISBN: 3031021045
Category : Mathematics
Languages : en
Pages : 822
Book Description
Inequalities play a central role in mathematics with various applications in other disciplines. The main goal of this contributed volume is to present several important matrix, operator, and norm inequalities in a systematic and self-contained fashion. Some powerful methods are used to provide significant mathematical inequalities in functional analysis, operator theory and numerous fields in recent decades. Some chapters are devoted to giving a series of new characterizations of operator monotone functions and some others explore inequalities connected to log-majorization, relative operator entropy, and the Ando-Hiai inequality. Several chapters are focused on Birkhoff–James orthogonality and approximate orthogonality in Banach spaces and operator algebras such as C*-algebras from historical perspectives to current development. A comprehensive account of the boundedness, compactness, and restrictions of Toeplitz operators can be found in the book. Furthermore, an overview of the Bishop-Phelps-Bollobás theorem is provided. The state-of-the-art of Hardy-Littlewood inequalities in sequence spaces is given. The chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
Asymptotics of Nonlinearities and Operator Equations
Author: Alexander Krasnoselskii
Publisher: Birkhäuser
ISBN: 3034890826
Category : Mathematics
Languages : en
Pages : 284
Book Description
New methods for solving classical problems in the theory of nonlinear operator equations (solvability, multiple solutions, bifurcations, nonlinear resonance, potential methods, etc) are introduced and discussed. The general abstract theorems are illustrated by various applications to differential equations and boundary value problems. In particular, the problem on forced periodic oscillations is considered for equations arising in control theory.
Publisher: Birkhäuser
ISBN: 3034890826
Category : Mathematics
Languages : en
Pages : 284
Book Description
New methods for solving classical problems in the theory of nonlinear operator equations (solvability, multiple solutions, bifurcations, nonlinear resonance, potential methods, etc) are introduced and discussed. The general abstract theorems are illustrated by various applications to differential equations and boundary value problems. In particular, the problem on forced periodic oscillations is considered for equations arising in control theory.
Differentiability of Six Operators on Nonsmooth Functions and p-Variation
Author: R. M. Dudley
Publisher: Springer
ISBN: 3540488146
Category : Mathematics
Languages : en
Pages : 289
Book Description
The book is about differentiability of six operators on functions or pairs of functions: composition (f of g), integration (of f dg), multiplication and convolution of two functions, both varying, and the product integral and inverse operators for one function. The operators are differentiable with respect to p-variation norms with optimal remainder bounds. Thus the functions as arguments of the operators can be nonsmooth, possibly discontinuous, but four of the six operators turn out to be analytic (holomorphic) for some p-variation norms. The reader will need to know basic real analysis, including Riemann and Lebesgue integration. The book is intended for analysts, statisticians and probabilists. Analysts and statisticians have each studied the differentiability of some of the operators from different viewpoints, and this volume seeks to unify and expand their results.
Publisher: Springer
ISBN: 3540488146
Category : Mathematics
Languages : en
Pages : 289
Book Description
The book is about differentiability of six operators on functions or pairs of functions: composition (f of g), integration (of f dg), multiplication and convolution of two functions, both varying, and the product integral and inverse operators for one function. The operators are differentiable with respect to p-variation norms with optimal remainder bounds. Thus the functions as arguments of the operators can be nonsmooth, possibly discontinuous, but four of the six operators turn out to be analytic (holomorphic) for some p-variation norms. The reader will need to know basic real analysis, including Riemann and Lebesgue integration. The book is intended for analysts, statisticians and probabilists. Analysts and statisticians have each studied the differentiability of some of the operators from different viewpoints, and this volume seeks to unify and expand their results.
Polynomial Operator Equations in Abstract Spaces and Applications
Author: Ioannis K. Argyros
Publisher: CRC Press
ISBN: 1000099431
Category : Mathematics
Languages : en
Pages : 586
Book Description
Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques. Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings. Topics include: Special cases of nonlinear operator equations Solution of polynomial operator equations of positive integer degree n Results on global existence theorems not related with contractions Galois theory Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas Results on the various Chandrasekhar equations Weierstrass theorem Matrix representations Lagrange and Hermite interpolation Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space The materials discussed can be used for the following studies Advanced numerical analysis Numerical functional analysis Functional analysis Approximation theory Integral and differential equation
Publisher: CRC Press
ISBN: 1000099431
Category : Mathematics
Languages : en
Pages : 586
Book Description
Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques. Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings. Topics include: Special cases of nonlinear operator equations Solution of polynomial operator equations of positive integer degree n Results on global existence theorems not related with contractions Galois theory Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas Results on the various Chandrasekhar equations Weierstrass theorem Matrix representations Lagrange and Hermite interpolation Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space The materials discussed can be used for the following studies Advanced numerical analysis Numerical functional analysis Functional analysis Approximation theory Integral and differential equation
Nonlinear Elliptic Partial Differential Equations
Author: Hervé Le Dret
Publisher: Springer
ISBN: 3319783904
Category : Mathematics
Languages : en
Pages : 259
Book Description
This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.
Publisher: Springer
ISBN: 3319783904
Category : Mathematics
Languages : en
Pages : 259
Book Description
This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.