Author: Radosław A. Kycia
Publisher: Springer
ISBN: 3030170314
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume presents lectures given at the Summer School Wisła 18: Nonlinear PDEs, Their Geometry, and Applications, which took place from August 20 - 30th, 2018 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures in the first part of this volume were delivered by experts in nonlinear differential equations and their applications to physics. Original research articles from members of the school comprise the second part of this volume. Much of the latter half of the volume complements the methods expounded in the first half by illustrating additional applications of geometric theory of differential equations. Various subjects are covered, providing readers a glimpse of current research. Other topics covered include thermodynamics, meteorology, and the Monge–Ampère equations. Researchers interested in the applications of nonlinear differential equations to physics will find this volume particularly useful. A knowledge of differential geometry is recommended for the first portion of the book, as well as a familiarity with basic concepts in physics.
Nonlinear PDEs, Their Geometry, and Applications
Author: Radosław A. Kycia
Publisher: Springer
ISBN: 3030170314
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume presents lectures given at the Summer School Wisła 18: Nonlinear PDEs, Their Geometry, and Applications, which took place from August 20 - 30th, 2018 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures in the first part of this volume were delivered by experts in nonlinear differential equations and their applications to physics. Original research articles from members of the school comprise the second part of this volume. Much of the latter half of the volume complements the methods expounded in the first half by illustrating additional applications of geometric theory of differential equations. Various subjects are covered, providing readers a glimpse of current research. Other topics covered include thermodynamics, meteorology, and the Monge–Ampère equations. Researchers interested in the applications of nonlinear differential equations to physics will find this volume particularly useful. A knowledge of differential geometry is recommended for the first portion of the book, as well as a familiarity with basic concepts in physics.
Publisher: Springer
ISBN: 3030170314
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume presents lectures given at the Summer School Wisła 18: Nonlinear PDEs, Their Geometry, and Applications, which took place from August 20 - 30th, 2018 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures in the first part of this volume were delivered by experts in nonlinear differential equations and their applications to physics. Original research articles from members of the school comprise the second part of this volume. Much of the latter half of the volume complements the methods expounded in the first half by illustrating additional applications of geometric theory of differential equations. Various subjects are covered, providing readers a glimpse of current research. Other topics covered include thermodynamics, meteorology, and the Monge–Ampère equations. Researchers interested in the applications of nonlinear differential equations to physics will find this volume particularly useful. A knowledge of differential geometry is recommended for the first portion of the book, as well as a familiarity with basic concepts in physics.
Partial Differential Equations arising from Physics and Geometry
Author: Mohamed Ben Ayed
Publisher: Cambridge University Press
ISBN: 1108431631
Category : Mathematics
Languages : en
Pages : 471
Book Description
Presents the state of the art in PDEs, including the latest research and short courses accessible to graduate students.
Publisher: Cambridge University Press
ISBN: 1108431631
Category : Mathematics
Languages : en
Pages : 471
Book Description
Presents the state of the art in PDEs, including the latest research and short courses accessible to graduate students.
Nonlinear Partial Differential Equations in Geometry and Physics
Author: Garth Baker
Publisher: Birkhäuser
ISBN: 3034888953
Category : Mathematics
Languages : en
Pages : 166
Book Description
This volume presents the proceedings of a series of lectures hosted by the Math ematics Department of The University of Tennessee, Knoxville, March 22-24, 1995, under the title "Nonlinear Partial Differential Equations in Geometry and Physics" . While the relevance of partial differential equations to problems in differen tial geometry has been recognized since the early days of the latter subject, the idea that differential equations of differential-geometric origin can be useful in the formulation of physical theories is a much more recent one. Perhaps the earliest emergence of systems of nonlinear partial differential equations having deep geo metric and physical importance were the Einstein equations of general relativity (1915). Several basic aspects of the initial value problem for the Einstein equa tions, such as existence, regularity and stability of solutions remain prime research areas today. eighty years after Einstein's work. An even more recent development is the realization that structures originally the context of models in theoretical physics may turn out to have introduced in important geometric or topological applications. Perhaps its emergence can be traced back to 1954, with the introduction of a non-abelian version of Maxwell's equations as a model in elementary-particle physics, by the physicists C.N. Yang and R. Mills. The rich geometric structure ofthe Yang-Mills equations was brought to the attention of mathematicians through work of M.F. Atiyah, :"J. Hitchin, I.
Publisher: Birkhäuser
ISBN: 3034888953
Category : Mathematics
Languages : en
Pages : 166
Book Description
This volume presents the proceedings of a series of lectures hosted by the Math ematics Department of The University of Tennessee, Knoxville, March 22-24, 1995, under the title "Nonlinear Partial Differential Equations in Geometry and Physics" . While the relevance of partial differential equations to problems in differen tial geometry has been recognized since the early days of the latter subject, the idea that differential equations of differential-geometric origin can be useful in the formulation of physical theories is a much more recent one. Perhaps the earliest emergence of systems of nonlinear partial differential equations having deep geo metric and physical importance were the Einstein equations of general relativity (1915). Several basic aspects of the initial value problem for the Einstein equa tions, such as existence, regularity and stability of solutions remain prime research areas today. eighty years after Einstein's work. An even more recent development is the realization that structures originally the context of models in theoretical physics may turn out to have introduced in important geometric or topological applications. Perhaps its emergence can be traced back to 1954, with the introduction of a non-abelian version of Maxwell's equations as a model in elementary-particle physics, by the physicists C.N. Yang and R. Mills. The rich geometric structure ofthe Yang-Mills equations was brought to the attention of mathematicians through work of M.F. Atiyah, :"J. Hitchin, I.
Partial Differential Equations III
Author: Michael E. Taylor
Publisher: Springer Science & Business Media
ISBN: 1441970495
Category : Mathematics
Languages : en
Pages : 734
Book Description
The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis
Publisher: Springer Science & Business Media
ISBN: 1441970495
Category : Mathematics
Languages : en
Pages : 734
Book Description
The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis
Contact Geometry and Nonlinear Differential Equations
Author: Alexei Kushner
Publisher: Cambridge University Press
ISBN: 0521824761
Category : Mathematics
Languages : en
Pages : 472
Book Description
Shows novel and modern ways of solving differential equations using methods from contact and symplectic geometry.
Publisher: Cambridge University Press
ISBN: 0521824761
Category : Mathematics
Languages : en
Pages : 472
Book Description
Shows novel and modern ways of solving differential equations using methods from contact and symplectic geometry.
Handbook of Nonlinear Partial Differential Equations
Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1135440816
Category : Mathematics
Languages : en
Pages : 835
Book Description
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:
Publisher: CRC Press
ISBN: 1135440816
Category : Mathematics
Languages : en
Pages : 835
Book Description
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:
Partial Differential Equations and Mathematical Physics
Author: Kunihiko Kajitani
Publisher: Springer Science & Business Media
ISBN: 9780817643096
Category : Mathematics
Languages : en
Pages : 260
Book Description
The 17 invited research articles in this volume, all written by leading experts in their respective fields, are dedicated to the great French mathematician Jean Leray. A wide range of topics with significant new results---detailed proofs---are presented in the areas of partial differential equations, complex analysis, and mathematical physics. Key subjects are: * Treated from the mathematical physics viewpoint: nonlinear stability of an expanding universe, the compressible Euler equation, spin groups and the Leray--Maslov index, * Linked to the Cauchy problem: an intermediate case between effective hyperbolicity and the Levi condition, global Cauchy--Kowalewski theorem in some Gevrey classes, the analytic continuation of the solution, necessary conditions for hyperbolic systems, well posedness in the Gevrey class, uniformly diagonalizable systems and reduced dimension, and monodromy of ramified Cauchy problem. Additional articles examine results on: * Local solvability for a system of partial differential operators, * The hypoellipticity of second order operators, * Differential forms and Hodge theory on analytic spaces, * Subelliptic operators and sub- Riemannian geometry. Contributors: V. Ancona, R. Beals, A. Bove, R. Camales, Y. Choquet- Bruhat, F. Colombini, M. De Gosson, S. De Gosson, M. Di Flaviano, B. Gaveau, D. Gourdin, P. Greiner, Y. Hamada, K. Kajitani, M. Mechab, K. Mizohata, V. Moncrief, N. Nakazawa, T. Nishitani, Y. Ohya, T. Okaji, S. Ouchi, S. Spagnolo, J. Vaillant, C. Wagschal, S. Wakabayashi The book is suitable as a reference text for graduate students and active researchers.
Publisher: Springer Science & Business Media
ISBN: 9780817643096
Category : Mathematics
Languages : en
Pages : 260
Book Description
The 17 invited research articles in this volume, all written by leading experts in their respective fields, are dedicated to the great French mathematician Jean Leray. A wide range of topics with significant new results---detailed proofs---are presented in the areas of partial differential equations, complex analysis, and mathematical physics. Key subjects are: * Treated from the mathematical physics viewpoint: nonlinear stability of an expanding universe, the compressible Euler equation, spin groups and the Leray--Maslov index, * Linked to the Cauchy problem: an intermediate case between effective hyperbolicity and the Levi condition, global Cauchy--Kowalewski theorem in some Gevrey classes, the analytic continuation of the solution, necessary conditions for hyperbolic systems, well posedness in the Gevrey class, uniformly diagonalizable systems and reduced dimension, and monodromy of ramified Cauchy problem. Additional articles examine results on: * Local solvability for a system of partial differential operators, * The hypoellipticity of second order operators, * Differential forms and Hodge theory on analytic spaces, * Subelliptic operators and sub- Riemannian geometry. Contributors: V. Ancona, R. Beals, A. Bove, R. Camales, Y. Choquet- Bruhat, F. Colombini, M. De Gosson, S. De Gosson, M. Di Flaviano, B. Gaveau, D. Gourdin, P. Greiner, Y. Hamada, K. Kajitani, M. Mechab, K. Mizohata, V. Moncrief, N. Nakazawa, T. Nishitani, Y. Ohya, T. Okaji, S. Ouchi, S. Spagnolo, J. Vaillant, C. Wagschal, S. Wakabayashi The book is suitable as a reference text for graduate students and active researchers.
Partial Differential Equations 2
Author: Friedrich Sauvigny
Publisher: Springer Science & Business Media
ISBN: 3540344624
Category : Mathematics
Languages : en
Pages : 401
Book Description
This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.
Publisher: Springer Science & Business Media
ISBN: 3540344624
Category : Mathematics
Languages : en
Pages : 401
Book Description
This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Partial Differential Equations
Author: Friedrich Sauvigny
Publisher: Springer Science & Business Media
ISBN: 3540344594
Category : Mathematics
Languages : en
Pages : 453
Book Description
This comprehensive two-volume textbook covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Special emphasis is placed on the connection of PDEs and complex variable methods. In this first volume the following topics are treated: Integration and differentiation on manifolds, Functional analytic foundations, Brouwer's degree of mapping, Generalized analytic functions, Potential theory and spherical harmonics, Linear partial differential equations. We solve partial differential equations via integral representations in this volume, reserving functional analytic solution methods for Volume Two.
Publisher: Springer Science & Business Media
ISBN: 3540344594
Category : Mathematics
Languages : en
Pages : 453
Book Description
This comprehensive two-volume textbook covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Special emphasis is placed on the connection of PDEs and complex variable methods. In this first volume the following topics are treated: Integration and differentiation on manifolds, Functional analytic foundations, Brouwer's degree of mapping, Generalized analytic functions, Potential theory and spherical harmonics, Linear partial differential equations. We solve partial differential equations via integral representations in this volume, reserving functional analytic solution methods for Volume Two.