Author: Tomás Roubicek
Publisher: Springer Science & Business Media
ISBN: 3764373970
Category : Mathematics
Languages : en
Pages : 415
Book Description
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Nonlinear Partial Differential Equations with Applications
Author: Tomás Roubicek
Publisher: Springer Science & Business Media
ISBN: 3764373970
Category : Mathematics
Languages : en
Pages : 415
Book Description
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Publisher: Springer Science & Business Media
ISBN: 3764373970
Category : Mathematics
Languages : en
Pages : 415
Book Description
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Nonlinear Partial Differential Equations
Author: Mi-Ho Giga
Publisher: Springer Science & Business Media
ISBN: 0817646515
Category : Mathematics
Languages : en
Pages : 307
Book Description
This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.
Publisher: Springer Science & Business Media
ISBN: 0817646515
Category : Mathematics
Languages : en
Pages : 307
Book Description
This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.
Fourier Analysis and Nonlinear Partial Differential Equations
Author: Hajer Bahouri
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 530
Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 530
Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Geometric Analysis and Nonlinear Partial Differential Equations
Author: Stefan Hildebrandt
Publisher: Springer Science & Business Media
ISBN: 3642556272
Category : Mathematics
Languages : en
Pages : 663
Book Description
This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.
Publisher: Springer Science & Business Media
ISBN: 3642556272
Category : Mathematics
Languages : en
Pages : 663
Book Description
This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.
Nonlinear PDEs
Author: Marius Ghergu
Publisher: Springer Science & Business Media
ISBN: 3642226647
Category : Mathematics
Languages : en
Pages : 402
Book Description
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 3642226647
Category : Mathematics
Languages : en
Pages : 402
Book Description
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
An Introduction to Nonlinear Partial Differential Equations
Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 0470225955
Category : Mathematics
Languages : en
Pages : 416
Book Description
Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.
Publisher: John Wiley & Sons
ISBN: 0470225955
Category : Mathematics
Languages : en
Pages : 416
Book Description
Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.
Numerical Methods for Nonlinear Partial Differential Equations
Author: Sören Bartels
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394
Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394
Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Order Structure and Topological Methods in Nonlinear Partial Differential Equations
Author: Yihong Du
Publisher: World Scientific
ISBN: 9812566244
Category : Mathematics
Languages : en
Pages : 202
Book Description
The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.
Publisher: World Scientific
ISBN: 9812566244
Category : Mathematics
Languages : en
Pages : 202
Book Description
The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.
Nonlinear Partial Differential Equations for Scientists and Engineers
Author: Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 1489928464
Category : Mathematics
Languages : en
Pages : 602
Book Description
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Publisher: Springer Science & Business Media
ISBN: 1489928464
Category : Mathematics
Languages : en
Pages : 602
Book Description
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Handbook of Nonlinear Partial Differential Equations
Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1135440816
Category : Mathematics
Languages : en
Pages : 835
Book Description
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:
Publisher: CRC Press
ISBN: 1135440816
Category : Mathematics
Languages : en
Pages : 835
Book Description
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook: