Author: Yuri A. Mitropolsky
Publisher: Springer
ISBN: 9789401585361
Category : Mathematics
Languages : en
Pages : 382
Book Description
Nonlinear Mechanics, Groups and Symmetry
Author: Yuri A. Mitropolsky
Publisher: Springer
ISBN: 9789401585361
Category : Mathematics
Languages : en
Pages : 382
Book Description
Publisher: Springer
ISBN: 9789401585361
Category : Mathematics
Languages : en
Pages : 382
Book Description
Geometric Mechanics and Symmetry
Author: Darryl D. Holm
Publisher: Oxford University Press
ISBN: 0199212902
Category : Mathematics
Languages : en
Pages : 537
Book Description
A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.
Publisher: Oxford University Press
ISBN: 0199212902
Category : Mathematics
Languages : en
Pages : 537
Book Description
A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.
Symmetries and Applications of Differential Equations
Author: Albert C. J. Luo
Publisher: Springer Nature
ISBN: 981164683X
Category : Mathematics
Languages : en
Pages : 287
Book Description
This book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classification, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (1939–2018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering.
Publisher: Springer Nature
ISBN: 981164683X
Category : Mathematics
Languages : en
Pages : 287
Book Description
This book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classification, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (1939–2018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering.
Imperfect Bifurcation in Structures and Materials
Author: Kiyohiro Ikeda
Publisher: Springer Nature
ISBN: 3030214737
Category : Science
Languages : en
Pages : 607
Book Description
Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
Publisher: Springer Nature
ISBN: 3030214737
Category : Science
Languages : en
Pages : 607
Book Description
Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 620
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 620
Book Description
Bifurcation Theory for Hexagonal Agglomeration in Economic Geography
Author: Kiyohiro Ikeda
Publisher: Springer Science & Business Media
ISBN: 4431542582
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered in a self-contained manner. The existence of hexagonal distributions is verified by group-theoretic bifurcation analysis, first by applying the so-called equivariant branching lemma and next by solving the bifurcation equation. This book offers a complete guide for the application of group-theoretic bifurcation analysis to economic agglomeration on the hexagonal lattice.
Publisher: Springer Science & Business Media
ISBN: 4431542582
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered in a self-contained manner. The existence of hexagonal distributions is verified by group-theoretic bifurcation analysis, first by applying the so-called equivariant branching lemma and next by solving the bifurcation equation. This book offers a complete guide for the application of group-theoretic bifurcation analysis to economic agglomeration on the hexagonal lattice.
Mathematics of Complexity and Dynamical Systems
Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885
Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885
Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Symmetry, Group Theory, and the Physical Properties of Crystals
Author: Richard C Powell
Publisher: Springer
ISBN: 1441975985
Category : Science
Languages : en
Pages : 238
Book Description
Complete with reference tables and sample problems, this volume serves as a textbook or reference for solid-state physics and chemistry, materials science, and engineering. Chapters illustrate symmetry, and its role in determining solid properties, as well as a demonstration of group theory.
Publisher: Springer
ISBN: 1441975985
Category : Science
Languages : en
Pages : 238
Book Description
Complete with reference tables and sample problems, this volume serves as a textbook or reference for solid-state physics and chemistry, materials science, and engineering. Chapters illustrate symmetry, and its role in determining solid properties, as well as a demonstration of group theory.
Nonlinear Equations in the Applied Sciences
Author: W. F. Ames
Publisher: Academic Press
ISBN: 0080958729
Category : Computers
Languages : en
Pages : 487
Book Description
Nonlinear Equations in the Applied Sciences
Publisher: Academic Press
ISBN: 0080958729
Category : Computers
Languages : en
Pages : 487
Book Description
Nonlinear Equations in the Applied Sciences
Applications of Lie Groups to Differential Equations
Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 1468402749
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.
Publisher: Springer Science & Business Media
ISBN: 1468402749
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.