Author: M. H. Aliabadi
Publisher: Witpress
ISBN:
Category : Mathematics
Languages : en
Pages : 272
Book Description
Incorporating the latest research in this increasingly popular area, this book presents theoretical and computational methods for problems in the field of nonlinear fracture and damage mechanics.
Nonlinear Fracture and Damage Mechanics
Author: M. H. Aliabadi
Publisher: Witpress
ISBN:
Category : Mathematics
Languages : en
Pages : 272
Book Description
Incorporating the latest research in this increasingly popular area, this book presents theoretical and computational methods for problems in the field of nonlinear fracture and damage mechanics.
Publisher: Witpress
ISBN:
Category : Mathematics
Languages : en
Pages : 272
Book Description
Incorporating the latest research in this increasingly popular area, this book presents theoretical and computational methods for problems in the field of nonlinear fracture and damage mechanics.
Nonlinear Fracture Mechanics
Author: M.P. Wnuk
Publisher: Springer
ISBN: 3709127580
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
Publisher: Springer
ISBN: 3709127580
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
Nonlinear Mechanics for Composite Heterogeneous Structures
Author: Georgios A. Drosopoulos
Publisher: CRC Press
ISBN: 1000579174
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Nonlinear Mechanics for Composite Heterogeneous Structures applies both classical and multi-scale finite element analysis to the non-linear, failure response of composite structures. These traditional and modern computational approaches are holistically presented, providing insight into a range of non-linear structural analysis problems. The classical methods include geometric and material non-linearity, plasticity, damage and contact mechanics. The cutting-edge formulations include cohesive zone models, the Extended Finite Element Method (XFEM), multi-scale computational homogenization, localization of damage, neural networks and data-driven techniques. This presentation is simple but efficient, enabling the reader to understand, select and apply appropriate methods through programming code or commercial finite element software. The book is suitable for undergraduate studies as a final year textbook and for MSc and PhD studies in structural, mechanical, aerospace engineering and material science, among others. Professionals in these fields will also be strongly benefited. An accompanying website provides MATLAB codes for two-dimensional finite element problems with contact, multi-scale (FE2) and non-linear XFEM analysis, data-driven and machine learning simulations.
Publisher: CRC Press
ISBN: 1000579174
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Nonlinear Mechanics for Composite Heterogeneous Structures applies both classical and multi-scale finite element analysis to the non-linear, failure response of composite structures. These traditional and modern computational approaches are holistically presented, providing insight into a range of non-linear structural analysis problems. The classical methods include geometric and material non-linearity, plasticity, damage and contact mechanics. The cutting-edge formulations include cohesive zone models, the Extended Finite Element Method (XFEM), multi-scale computational homogenization, localization of damage, neural networks and data-driven techniques. This presentation is simple but efficient, enabling the reader to understand, select and apply appropriate methods through programming code or commercial finite element software. The book is suitable for undergraduate studies as a final year textbook and for MSc and PhD studies in structural, mechanical, aerospace engineering and material science, among others. Professionals in these fields will also be strongly benefited. An accompanying website provides MATLAB codes for two-dimensional finite element problems with contact, multi-scale (FE2) and non-linear XFEM analysis, data-driven and machine learning simulations.
Encyclopedia of Continuum Mechanics
Author: Holm Altenbach
Publisher: Springer
ISBN: 9783662557709
Category : Science
Languages : en
Pages : 0
Book Description
This Encyclopedia covers the entire science of continuum mechanics including the mechanics of materials and fluids. The encyclopedia comprises mathematical definitions for continuum mechanical modeling, fundamental physical concepts, mechanical modeling methodology, numerical approaches and many fundamental applications. The modelling and analytical techniques are powerful tools in mechanical civil and areospsace engineering, plus in related fields of plasticity, viscoelasticity and rheology. Tensor-based and reference-frame-independent, continuum mechanics has recently found applications in geophysics and materials.
Publisher: Springer
ISBN: 9783662557709
Category : Science
Languages : en
Pages : 0
Book Description
This Encyclopedia covers the entire science of continuum mechanics including the mechanics of materials and fluids. The encyclopedia comprises mathematical definitions for continuum mechanical modeling, fundamental physical concepts, mechanical modeling methodology, numerical approaches and many fundamental applications. The modelling and analytical techniques are powerful tools in mechanical civil and areospsace engineering, plus in related fields of plasticity, viscoelasticity and rheology. Tensor-based and reference-frame-independent, continuum mechanics has recently found applications in geophysics and materials.
Recent Trends in Fracture and Damage Mechanics
Author: Geralf Hütter
Publisher: Springer
ISBN: 3319214675
Category : Science
Languages : en
Pages : 438
Book Description
This book covers a wide range of topics in fracture and damage mechanics. It presents historical perspectives as well as recent innovative developments, presented by peer reviewed contributions from internationally acknowledged authors. The volume deals with the modeling of fracture and damage in smart materials, current industrial applications of fracture mechanics, and it explores advances in fracture testing methods. In addition, readers will discover trends in the field of local approach to fracture and approaches using analytical mechanics. Scholars in the fields of materials science, engineering and computational science will value this volume which is dedicated to Meinhard Kuna on the occasion of his 65th birthday in 2015. This book incorporates the proceedings of an international symposium that was organized to honor Meinhard Kuna’s contributions to the field of theoretical and applied fracture and damage mechanics.
Publisher: Springer
ISBN: 3319214675
Category : Science
Languages : en
Pages : 438
Book Description
This book covers a wide range of topics in fracture and damage mechanics. It presents historical perspectives as well as recent innovative developments, presented by peer reviewed contributions from internationally acknowledged authors. The volume deals with the modeling of fracture and damage in smart materials, current industrial applications of fracture mechanics, and it explores advances in fracture testing methods. In addition, readers will discover trends in the field of local approach to fracture and approaches using analytical mechanics. Scholars in the fields of materials science, engineering and computational science will value this volume which is dedicated to Meinhard Kuna on the occasion of his 65th birthday in 2015. This book incorporates the proceedings of an international symposium that was organized to honor Meinhard Kuna’s contributions to the field of theoretical and applied fracture and damage mechanics.
Non-Linear Mechanics of Materials
Author: Jacques Besson
Publisher: Springer Science & Business Media
ISBN: 9048133564
Category : Science
Languages : en
Pages : 433
Book Description
In mechanical engineering and structural analysis there is a significant gap between the material models currently used by engineers for industry applications and those already available in research laboratories. This is especially apparent with the huge progress of computational possibilities and the corresponding dissemination of numerical tools in engineering practice, which essentially deliver linear solutions. Future improvements of design and life assessment methods necessarily involve non-linear solutions for inelastic responses, in plasticity or viscoplasticity, as well as damage and fracture analyses. The dissemination of knowledge can be improved by software developments, data base completion and generalization, but also by information and training. With such a perspective Non-Linear Mechanics of Materials proposes a knowledge actualization, in order to better understand and use recent material constitutive and damage modeling methods in the context of structural analysis or multiscale material microstructure computations.
Publisher: Springer Science & Business Media
ISBN: 9048133564
Category : Science
Languages : en
Pages : 433
Book Description
In mechanical engineering and structural analysis there is a significant gap between the material models currently used by engineers for industry applications and those already available in research laboratories. This is especially apparent with the huge progress of computational possibilities and the corresponding dissemination of numerical tools in engineering practice, which essentially deliver linear solutions. Future improvements of design and life assessment methods necessarily involve non-linear solutions for inelastic responses, in plasticity or viscoplasticity, as well as damage and fracture analyses. The dissemination of knowledge can be improved by software developments, data base completion and generalization, but also by information and training. With such a perspective Non-Linear Mechanics of Materials proposes a knowledge actualization, in order to better understand and use recent material constitutive and damage modeling methods in the context of structural analysis or multiscale material microstructure computations.
Advanced Fracture Mechanics and Structural Integrity
Author: Ashok Saxena
Publisher: CRC Press
ISBN: 1351004042
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
Advanced Fracture Mechanics and Structural Integrity is organized to cover quantitative descriptions of crack growth and fracture phenomena. The mechanics of fracture are explained, emphasizing elastic-plastic and time-dependent fracture mechanics. Applications are presented, using examples from power generation, aerospace, marine, and chemical industries, with focus on predicting the remaining life of structural components and advanced testing metods for structural materials. Numerous examples and end-of-chapter problems are provided, along with references to encourage further study.The book is written for use in an advanced graduate course on fracture mechanics or structural integrity.
Publisher: CRC Press
ISBN: 1351004042
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
Advanced Fracture Mechanics and Structural Integrity is organized to cover quantitative descriptions of crack growth and fracture phenomena. The mechanics of fracture are explained, emphasizing elastic-plastic and time-dependent fracture mechanics. Applications are presented, using examples from power generation, aerospace, marine, and chemical industries, with focus on predicting the remaining life of structural components and advanced testing metods for structural materials. Numerous examples and end-of-chapter problems are provided, along with references to encourage further study.The book is written for use in an advanced graduate course on fracture mechanics or structural integrity.
Application of Fracture Mechanics to Cementitious Composites
Author: S.P. Shah
Publisher: Springer Science & Business Media
ISBN: 9400951213
Category : Science
Languages : en
Pages : 701
Book Description
Portland cement concrete is a relatively brittle material. As a result, mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete, and fiber reinforced concrete is critically influenced by crack propagation. It is, thus, not surprising that attempts are being made to apply the concepts of fracture mechanics to quantify the resistance to cracking in cementious composites. The field of fracture mechanics originated in the 1920's with A. A. Griffith's work on fracture of brittle materials such as glass. Its most significant applications, however, have been for controlling brittle fracture and fatigue failure of metallic structures such as pressure vessels, airplanes, ships and pipe lines. Considerable development has occurred in the last twenty years in modifying Griffith's ideas or in proposing new concepts to account for the ductility typical of metals. As a result of these efforts, standard testing techniques have been available to obtain fracture parameters for metals, and design based on these parameters are included in relevant specifications. Many attempts have been made, in the last two decades or so, to apply the fracture mechanics concepts to cement, mortar, con crete and reinforced concrete. So far, these attempts have not led to a unique set of material parameters which can quantify the resistance of these cementitious composites to fracture. No standard testing methods and a generally accepted theoretical analysis are established for concrete as they are for metals.
Publisher: Springer Science & Business Media
ISBN: 9400951213
Category : Science
Languages : en
Pages : 701
Book Description
Portland cement concrete is a relatively brittle material. As a result, mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete, and fiber reinforced concrete is critically influenced by crack propagation. It is, thus, not surprising that attempts are being made to apply the concepts of fracture mechanics to quantify the resistance to cracking in cementious composites. The field of fracture mechanics originated in the 1920's with A. A. Griffith's work on fracture of brittle materials such as glass. Its most significant applications, however, have been for controlling brittle fracture and fatigue failure of metallic structures such as pressure vessels, airplanes, ships and pipe lines. Considerable development has occurred in the last twenty years in modifying Griffith's ideas or in proposing new concepts to account for the ductility typical of metals. As a result of these efforts, standard testing techniques have been available to obtain fracture parameters for metals, and design based on these parameters are included in relevant specifications. Many attempts have been made, in the last two decades or so, to apply the fracture mechanics concepts to cement, mortar, con crete and reinforced concrete. So far, these attempts have not led to a unique set of material parameters which can quantify the resistance of these cementitious composites to fracture. No standard testing methods and a generally accepted theoretical analysis are established for concrete as they are for metals.
Mechanics and Mechanisms of Fracture
Author: Alan F. Liu
Publisher: ASM International
ISBN: 1615032525
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
Publisher: ASM International
ISBN: 1615032525
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
Introduction to Fracture Mechanics
Author: Robert O. Ritchie
Publisher: Elsevier
ISBN: 032389822X
Category : Technology & Engineering
Languages : en
Pages : 168
Book Description
Introduction to Fracture Mechanics presents an introduction to the origins, formulation and application of fracture mechanics for the design, safe operation and life prediction in structural materials and components. The book introduces and informs the reader on how fracture mechanics works and how it is so different from other forms of analysis that are used to characterize mechanical properties. Chapters cover foundational topics and the use of linear-elastic fracture mechanics, involving both K-based characterizing parameter and G-based energy approaches, and how to characterize the fracture toughness of materials under plane-strain and non plane-strain conditions using the notion of crack-resistance or R-curves. Other sections cover far more complex nonlinear-elastic fracture mechanics based on the use of the J-integral and the crack-tip opening displacement. These topics largely involve continuum mechanics descriptions of crack initiation, slow crack growth, eventual instability by overload fracture, and subcritical cracking. Presents how, for a given material, a fracture toughness value can be measured on a small laboratory sample and then used directly to predict the failure (by fracture, fatigue, creep, etc.) of a much larger structure in service Covers the rudiments of fracture mechanics from the perspective of the philosophy underlying the few principles and the many assumptions that form the basis of the discipline Provides readers with a "working knowledge" of fracture mechanics, describing its potency for damage-tolerant design, for preventing failures through appropriate life-prediction strategies, and for quantitative failure analysis (fracture diagnostics)
Publisher: Elsevier
ISBN: 032389822X
Category : Technology & Engineering
Languages : en
Pages : 168
Book Description
Introduction to Fracture Mechanics presents an introduction to the origins, formulation and application of fracture mechanics for the design, safe operation and life prediction in structural materials and components. The book introduces and informs the reader on how fracture mechanics works and how it is so different from other forms of analysis that are used to characterize mechanical properties. Chapters cover foundational topics and the use of linear-elastic fracture mechanics, involving both K-based characterizing parameter and G-based energy approaches, and how to characterize the fracture toughness of materials under plane-strain and non plane-strain conditions using the notion of crack-resistance or R-curves. Other sections cover far more complex nonlinear-elastic fracture mechanics based on the use of the J-integral and the crack-tip opening displacement. These topics largely involve continuum mechanics descriptions of crack initiation, slow crack growth, eventual instability by overload fracture, and subcritical cracking. Presents how, for a given material, a fracture toughness value can be measured on a small laboratory sample and then used directly to predict the failure (by fracture, fatigue, creep, etc.) of a much larger structure in service Covers the rudiments of fracture mechanics from the perspective of the philosophy underlying the few principles and the many assumptions that form the basis of the discipline Provides readers with a "working knowledge" of fracture mechanics, describing its potency for damage-tolerant design, for preventing failures through appropriate life-prediction strategies, and for quantitative failure analysis (fracture diagnostics)