Nonlinear Flow Phenomena and Homotopy Analysis

Nonlinear Flow Phenomena and Homotopy Analysis PDF Author: Kuppalapalle Vajravelu
Publisher: Springer Science & Business Media
ISBN: 364232102X
Category : Mathematics
Languages : en
Pages : 197

Get Book Here

Book Description
Since most of the problems arising in science and engineering are nonlinear, they are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems and often fail when used for problems with strong nonlinearity. “Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer” presents the current theoretical developments of the analytical method of homotopy analysis. This book not only addresses the theoretical framework for the method, but also gives a number of examples of nonlinear problems that have been solved by means of the homotopy analysis method. The particular focus lies on fluid flow problems governed by nonlinear differential equations. This book is intended for researchers in applied mathematics, physics, mechanics and engineering. Both Kuppalapalle Vajravelu and Robert A. Van Gorder work at the University of Central Florida, USA.

Nonlinear Flow Phenomena and Homotopy Analysis

Nonlinear Flow Phenomena and Homotopy Analysis PDF Author: Kuppalapalle Vajravelu
Publisher: Springer Science & Business Media
ISBN: 364232102X
Category : Mathematics
Languages : en
Pages : 197

Get Book Here

Book Description
Since most of the problems arising in science and engineering are nonlinear, they are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems and often fail when used for problems with strong nonlinearity. “Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer” presents the current theoretical developments of the analytical method of homotopy analysis. This book not only addresses the theoretical framework for the method, but also gives a number of examples of nonlinear problems that have been solved by means of the homotopy analysis method. The particular focus lies on fluid flow problems governed by nonlinear differential equations. This book is intended for researchers in applied mathematics, physics, mechanics and engineering. Both Kuppalapalle Vajravelu and Robert A. Van Gorder work at the University of Central Florida, USA.

Advances In The Homotopy Analysis Method

Advances In The Homotopy Analysis Method PDF Author: Shijun Liao
Publisher: World Scientific
ISBN: 9814551260
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Unlike other analytic techniques, the Homotopy Analysis Method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity.This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications.

Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy

Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy PDF Author: Manoj Sahni
Publisher: Springer Nature
ISBN: 9811999066
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
The book is a collection of best selected research papers presented at the Third International Conference on “Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy (MMCITRE 2022),” organized by the University of Technology Sydney, Australia, in association with the Department of Mathematics, Pandit Deendayal Energy University, India, and Forum for Interdisciplinary Mathematics. This book presents new knowledge and recent developments in all aspects of computational techniques, mathematical modeling, energy systems, applications of fuzzy sets and intelligent computing. The book provides innovative works of researchers, academicians and students in the area of interdisciplinary mathematics, statistics, computational intelligence and renewable energy.

Homotopy-Based Methods in Water Engineering

Homotopy-Based Methods in Water Engineering PDF Author: Manotosh Kumbhakar
Publisher: CRC Press
ISBN: 1000893359
Category : Technology & Engineering
Languages : en
Pages : 471

Get Book Here

Book Description
Most complex physical phenomena can be described by nonlinear equations, specifically, differential equations. In water engineering, nonlinear differential equations play a vital role in modeling physical processes. Analytical solutions to strong nonlinear problems are not easily tractable, and existing techniques are problem-specific and applicable for specific types of equations. Exploring the concept of homotopy from topology, different kinds of homotopy-based methods have been proposed for analytically solving nonlinear differential equations, given by approximate series solutions. Homotopy-Based Methods in Water Engineering attempts to present the wide applicability of these methods to water engineering problems. It solves all kinds of nonlinear equations, namely algebraic/transcendental equations, ordinary differential equations (ODEs), systems of ODEs, partial differential equations (PDEs), systems of PDEs, and integro-differential equations using the homotopy-based methods. The content of the book deals with some selected problems of hydraulics of open-channel flow (with or without sediment transport), groundwater hydrology, surface-water hydrology, general Burger’s equation, and water quality. Features: Provides analytical treatments to some key problems in water engineering Describes the applicability of homotopy-based methods for solving nonlinear equations, particularly differential equations Compares different approaches in dealing with issues of nonlinearity

Analysis, Geometry, Nonlinear Optimization And Applications

Analysis, Geometry, Nonlinear Optimization And Applications PDF Author: Panos M Pardalos
Publisher: World Scientific
ISBN: 981126158X
Category : Mathematics
Languages : en
Pages : 895

Get Book Here

Book Description
This volume features an extensive account of both research and expository papers in a wide area of engineering and mathematics and its various applications.Topics treated within this book include optimization of control points, game theory, equilibrium points, algorithms, Cartan matrices, integral inequalities, Volterra integro-differential equations, Caristi-Kirk theorems, Laplace type integral operators, etc.This useful reference text benefits graduate students, beginning research engineers and mathematicians as well as established researchers in these domains.

Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes

Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes PDF Author: Kuppalapalle Vajravelu
Publisher: Academic Press
ISBN: 0128037857
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
Most of the equations governing the problems related to science and engineering are nonlinear in nature. As a result, they are inherently difficult to solve. Analytical solutions are available only for some special cases. For other cases, one has no easy means but to solve the problem must depend on numerical solutions. Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes: Numerical Solutions presents the current theoretical developments of boundary layer theory, a branch of transport phenomena. Also, the book addresses the theoretical developments in the area and presents a number of physical problems that have been solved by analytical or numerical method. It is focused particularly on fluid flow problems governed by nonlinear differential equations. The book is intended for researchers in applied mathematics, physics, mechanics and engineering. - Addresses basic concepts to understand the theoretical framework for the method - Provides examples of nonlinear problems that have been solved through the use of numerical method - Focuses on fluid flow problems governed by nonlinear equations

Beyond Perturbation

Beyond Perturbation PDF Author: Shijun Liao
Publisher: CRC Press
ISBN: 1135438293
Category : Mathematics
Languages : en
Pages : 335

Get Book Here

Book Description
Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity. This book introduces a powerful new analytic method for nonlinear problems-homotopy analysis-that remains valid even with strong nonlinearity. In Part I, the author starts with a very simple example, then presents the basic ideas, detailed procedures, and the advantages (and limitations) of homotopy analysis. Part II illustrates the application of homotopy analysis to many interesting nonlinear problems. These range from simple bifurcations of a nonlinear boundary-value problem to the Thomas-Fermi atom model, Volterra's population model, Von Karman swirling viscous flow, and nonlinear progressive waves in deep water. Although the homotopy analysis method has been verified in a number of prestigious journals, it has yet to be fully detailed in book form. Written by a pioneer in its development, Beyond Pertubation: Introduction to the Homotopy Analysis Method is your first opportunity to explore the details of this valuable new approach, add it to your analytic toolbox, and perhaps make contributions to some of the questions that remain open.

The Optimal Homotopy Asymptotic Method

The Optimal Homotopy Asymptotic Method PDF Author: Vasile Marinca
Publisher: Springer
ISBN: 3319153749
Category : Technology & Engineering
Languages : en
Pages : 476

Get Book Here

Book Description
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.

Homotopy Analysis Method in Nonlinear Differential Equations

Homotopy Analysis Method in Nonlinear Differential Equations PDF Author: Shijun Liao
Publisher: Springer Science & Business Media
ISBN: 3642251323
Category : Mathematics
Languages : en
Pages : 566

Get Book Here

Book Description
"Homotopy Analysis Method in Nonlinear Differential Equations" presents the latest developments and applications of the analytic approximation method for highly nonlinear problems, namely the homotopy analysis method (HAM). Unlike perturbation methods, the HAM has nothing to do with small/large physical parameters. In addition, it provides great freedom to choose the equation-type of linear sub-problems and the base functions of a solution. Above all, it provides a convenient way to guarantee the convergence of a solution. This book consists of three parts. Part I provides its basic ideas and theoretical development. Part II presents the HAM-based Mathematica package BVPh 1.0 for nonlinear boundary-value problems and its applications. Part III shows the validity of the HAM for nonlinear PDEs, such as the American put option and resonance criterion of nonlinear travelling waves. New solutions to a number of nonlinear problems are presented, illustrating the originality of the HAM. Mathematica codes are freely available online to make it easy for readers to understand and use the HAM. This book is suitable for researchers and postgraduates in applied mathematics, physics, nonlinear mechanics, finance and engineering. Dr. Shijun Liao, a distinguished professor of Shanghai Jiao Tong University, is a pioneer of the HAM.

Fractional Calculus: New Applications in Understanding Nonlinear Phenomena

Fractional Calculus: New Applications in Understanding Nonlinear Phenomena PDF Author: Mehmet Yavuz
Publisher: Bentham Science Publishers
ISBN: 9815051946
Category : Mathematics
Languages : en
Pages : 275

Get Book Here

Book Description
In the last two decades, many new fractional operators have appeared, often defined using integrals with special functions in the kernel as well as their extended or multivariable forms. Modern operators in fractional calculus have different properties which are comparable to those of classical operators.These have been intensively studied formodelling and analysing real-world phenomena. There is now a growing body of research on new methods to understand natural occurrences and tackle different problems. This book presents ten reviews of recent fractional operators split over three sections: 1. Chaotic Systems and Control (covers the Caputo fractional derivative, and a chaotic fractional-order financial system)2. Heat Conduction (covers the Duhamel theorem for time-dependent source terms, and the Cattaneo–Hristov model for oscillatory heat transfer)3. Computational Methods and Their Illustrative Applications (covers mathematical analysis for understanding 5 real-word phenomena: HTLV-1 infection of CD4+ T-cells, traveling waves, rumor-spreading, biochemical reactions, and the computational fluid dynamics of a non-powered floating object navigating in an approach channel) This volume is a resource for researchers in physics, biology, behavioral sciences, and mathematics who are interested in new applications of fractional calculus in the study of nonlinear phenomena.