Author: John D. Clayton
Publisher: Springer
ISBN: 3030153304
Category : Science
Languages : en
Pages : 488
Book Description
This book describes thermoelastic and inelastic deformation processes in crystalline solids undergoing loading by shock compression. Constitutive models with a basis in geometrically nonlinear continuum mechanics supply these descriptions. Large deformations such as finite strains and rotations, are addressed. The book covers dominant mechanisms of nonlinear thermoelasticity, dislocation plasticity, deformation twinning, fracture, flow, and other structure changes. Rigorous derivations of theoretical results are provided, with approximately 1300 numbered equations and an extensive bibliography of over 500 historical and modern references spanning from the 1920s to the present day. Case studies contain property data, as well as analytical, and numerical solutions to shock compression problems for different materials. Such materials are metals, ceramics, and minerals, single crystalline and polycrystalline. The intended audience of this book is practicing scientists (physicists, engineers, materials scientists, and applied mathematicians) involved in advanced research on shock compression of solid materials.
Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids
Author: John D. Clayton
Publisher: Springer
ISBN: 3030153304
Category : Science
Languages : en
Pages : 488
Book Description
This book describes thermoelastic and inelastic deformation processes in crystalline solids undergoing loading by shock compression. Constitutive models with a basis in geometrically nonlinear continuum mechanics supply these descriptions. Large deformations such as finite strains and rotations, are addressed. The book covers dominant mechanisms of nonlinear thermoelasticity, dislocation plasticity, deformation twinning, fracture, flow, and other structure changes. Rigorous derivations of theoretical results are provided, with approximately 1300 numbered equations and an extensive bibliography of over 500 historical and modern references spanning from the 1920s to the present day. Case studies contain property data, as well as analytical, and numerical solutions to shock compression problems for different materials. Such materials are metals, ceramics, and minerals, single crystalline and polycrystalline. The intended audience of this book is practicing scientists (physicists, engineers, materials scientists, and applied mathematicians) involved in advanced research on shock compression of solid materials.
Publisher: Springer
ISBN: 3030153304
Category : Science
Languages : en
Pages : 488
Book Description
This book describes thermoelastic and inelastic deformation processes in crystalline solids undergoing loading by shock compression. Constitutive models with a basis in geometrically nonlinear continuum mechanics supply these descriptions. Large deformations such as finite strains and rotations, are addressed. The book covers dominant mechanisms of nonlinear thermoelasticity, dislocation plasticity, deformation twinning, fracture, flow, and other structure changes. Rigorous derivations of theoretical results are provided, with approximately 1300 numbered equations and an extensive bibliography of over 500 historical and modern references spanning from the 1920s to the present day. Case studies contain property data, as well as analytical, and numerical solutions to shock compression problems for different materials. Such materials are metals, ceramics, and minerals, single crystalline and polycrystalline. The intended audience of this book is practicing scientists (physicists, engineers, materials scientists, and applied mathematicians) involved in advanced research on shock compression of solid materials.
Nonlinear Mechanics of Crystals
Author: John D. Clayton
Publisher: Springer Science & Business Media
ISBN: 9400703503
Category : Science
Languages : en
Pages : 709
Book Description
This book describes behavior of crystalline solids primarily via methods of modern continuum mechanics. Emphasis is given to geometrically nonlinear descriptions, i.e., finite deformations. Primary topics include anisotropic crystal elasticity, plasticity, and methods for representing effects of defects in the solid on the material's mechanical response. Defects include crystal dislocations, point defects, twins, voids or pores, and micro-cracks. Thermoelastic, dielectric, and piezoelectric behaviors are addressed. Traditional and higher-order gradient theories of mechanical behavior of crystalline solids are discussed. Differential-geometric representations of kinematics of finite deformations and lattice defect distributions are presented. Multi-scale modeling concepts are described in the context of elastic and plastic material behavior. Representative substances towards which modeling techniques may be applied are single- and poly- crystalline metals and alloys, ceramics, and minerals. This book is intended for use by scientists and engineers involved in advanced constitutive modeling of nonlinear mechanical behavior of solid crystalline materials. Knowledge of fundamentals of continuum mechanics and tensor calculus is a prerequisite for accessing much of the text. This book could be used as supplemental material for graduate courses on continuum mechanics, elasticity, plasticity, micromechanics, or dislocation mechanics, for students in various disciplines of engineering, materials science, applied mathematics, and condensed matter physics.
Publisher: Springer Science & Business Media
ISBN: 9400703503
Category : Science
Languages : en
Pages : 709
Book Description
This book describes behavior of crystalline solids primarily via methods of modern continuum mechanics. Emphasis is given to geometrically nonlinear descriptions, i.e., finite deformations. Primary topics include anisotropic crystal elasticity, plasticity, and methods for representing effects of defects in the solid on the material's mechanical response. Defects include crystal dislocations, point defects, twins, voids or pores, and micro-cracks. Thermoelastic, dielectric, and piezoelectric behaviors are addressed. Traditional and higher-order gradient theories of mechanical behavior of crystalline solids are discussed. Differential-geometric representations of kinematics of finite deformations and lattice defect distributions are presented. Multi-scale modeling concepts are described in the context of elastic and plastic material behavior. Representative substances towards which modeling techniques may be applied are single- and poly- crystalline metals and alloys, ceramics, and minerals. This book is intended for use by scientists and engineers involved in advanced constitutive modeling of nonlinear mechanical behavior of solid crystalline materials. Knowledge of fundamentals of continuum mechanics and tensor calculus is a prerequisite for accessing much of the text. This book could be used as supplemental material for graduate courses on continuum mechanics, elasticity, plasticity, micromechanics, or dislocation mechanics, for students in various disciplines of engineering, materials science, applied mathematics, and condensed matter physics.
Physics Briefs
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1058
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1058
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 318
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 318
Book Description
Electronic Basis of the Strength of Materials
Author: John J. Gilman
Publisher: Cambridge University Press
ISBN: 1139435183
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
This 2003 book relates the strength characteristics of constituent atoms to the electronic structures. It begins with short reviews of classical and quantum mechanics followed by reviews of the three major branches of the strength of materials: elastic stiffnesses; plastic responses; and the nature of fracture.
Publisher: Cambridge University Press
ISBN: 1139435183
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
This 2003 book relates the strength characteristics of constituent atoms to the electronic structures. It begins with short reviews of classical and quantum mechanics followed by reviews of the three major branches of the strength of materials: elastic stiffnesses; plastic responses; and the nature of fracture.
Journal of Research of the National Bureau of Standards
Author: United States. National Bureau of Standards
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 572
Book Description
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 572
Book Description
Stability of Structures
Author: Z. P. Ba?ant
Publisher: World Scientific
ISBN: 9814317020
Category : Technology & Engineering
Languages : en
Pages : 1039
Book Description
A crucial element of structural and continuum mechanics, stability theory has limitless applications in civil, mechanical, aerospace, naval and nuclear engineering. This text of unparalleled scope presents a comprehensive exposition of the principles and applications of stability analysis. It has been proven as a text for introductory courses and various advanced courses for graduate students. It is also prized as an exhaustive reference for engineers and researchers. The authors' focus on understanding of the basic principles rather than excessive detailed solutions, and their treatment of each subject proceed from simple examples to general concepts and rigorous formulations. All the results are derived using as simple mathematics as possible. Numerous examples are given and 700 exercise problems help in attaining a firm grasp of this central aspect of solid mechanics. The book is an unabridged republication of the 1991 edition by Oxford University Press and the 2003 edition by Dover, updated with 18 pages of end notes.
Publisher: World Scientific
ISBN: 9814317020
Category : Technology & Engineering
Languages : en
Pages : 1039
Book Description
A crucial element of structural and continuum mechanics, stability theory has limitless applications in civil, mechanical, aerospace, naval and nuclear engineering. This text of unparalleled scope presents a comprehensive exposition of the principles and applications of stability analysis. It has been proven as a text for introductory courses and various advanced courses for graduate students. It is also prized as an exhaustive reference for engineers and researchers. The authors' focus on understanding of the basic principles rather than excessive detailed solutions, and their treatment of each subject proceed from simple examples to general concepts and rigorous formulations. All the results are derived using as simple mathematics as possible. Numerous examples are given and 700 exercise problems help in attaining a firm grasp of this central aspect of solid mechanics. The book is an unabridged republication of the 1991 edition by Oxford University Press and the 2003 edition by Dover, updated with 18 pages of end notes.
Shock Compression of Condensed Matter--1995
Author: S. C. Schmidt
Publisher: A I P Press
ISBN:
Category : Condensed matter
Languages : en
Pages : 720
Book Description
Publisher: A I P Press
ISBN:
Category : Condensed matter
Languages : en
Pages : 720
Book Description
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 810
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 810
Book Description
U. S. Government Research and Development Reports
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1198
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1198
Book Description