Nonlinear Analysis of Structures (1997)

Nonlinear Analysis of Structures (1997) PDF Author: Muthukrishnan Sathyamoorthy
Publisher: CRC Press
ISBN: 1351359819
Category : Mathematics
Languages : en
Pages : 548

Get Book Here

Book Description
Nonlinear Analysis of Structures presents a complete evaluation of the nonlinear static and dynamic behavior of beams, rods, plates, trusses, frames, mechanisms, stiffened structures, sandwich plates, and shells. These elements are important components in a wide variety of structures and vehicles such as spacecraft and missiles, underwater vessels and structures, and modern housing. Today's engineers and designers must understand these elements and their behavior when they are subjected to various types of loads. Coverage includes the various types of nonlinearities, stress-strain relations and the development of nonlinear governing equations derived from nonlinear elastic theory. This complete guide includes both mathematical treatment and real-world applications, with a wealth of problems and examples to support the text. Special topics include a useful and informative chapter on nonlinear analysis of composite structures, and another on recent developments in symbolic computation. Designed for both self-study and classroom instruction, Nonlinear Analysis of Structures is also an authoritative reference for practicing engineers and scientists. One of the world's leaders in the study of nonlinear structural analysis, Professor Sathyamoorthy has made significant research contributions to the field of nonlinear mechanics for twenty-seven years. His foremost contribution to date has been the development of a unique transverse shear deformation theory for plates undergoing large amplitude vibrations and the examination of multiple mode solutions for plates. In addition to his notable research, Professor Sathyamoorthy has also developed and taught courses in the field at universities in India, Canada, and the United States.

Nonlinear Analysis of Structures (1997)

Nonlinear Analysis of Structures (1997) PDF Author: Muthukrishnan Sathyamoorthy
Publisher: CRC Press
ISBN: 1351359819
Category : Mathematics
Languages : en
Pages : 548

Get Book Here

Book Description
Nonlinear Analysis of Structures presents a complete evaluation of the nonlinear static and dynamic behavior of beams, rods, plates, trusses, frames, mechanisms, stiffened structures, sandwich plates, and shells. These elements are important components in a wide variety of structures and vehicles such as spacecraft and missiles, underwater vessels and structures, and modern housing. Today's engineers and designers must understand these elements and their behavior when they are subjected to various types of loads. Coverage includes the various types of nonlinearities, stress-strain relations and the development of nonlinear governing equations derived from nonlinear elastic theory. This complete guide includes both mathematical treatment and real-world applications, with a wealth of problems and examples to support the text. Special topics include a useful and informative chapter on nonlinear analysis of composite structures, and another on recent developments in symbolic computation. Designed for both self-study and classroom instruction, Nonlinear Analysis of Structures is also an authoritative reference for practicing engineers and scientists. One of the world's leaders in the study of nonlinear structural analysis, Professor Sathyamoorthy has made significant research contributions to the field of nonlinear mechanics for twenty-seven years. His foremost contribution to date has been the development of a unique transverse shear deformation theory for plates undergoing large amplitude vibrations and the examination of multiple mode solutions for plates. In addition to his notable research, Professor Sathyamoorthy has also developed and taught courses in the field at universities in India, Canada, and the United States.

Differential Quadrature and Differential Quadrature Based Element Methods

Differential Quadrature and Differential Quadrature Based Element Methods PDF Author: Xinwei Wang
Publisher: Butterworth-Heinemann
ISBN: 0128031077
Category : Computers
Languages : en
Pages : 408

Get Book Here

Book Description
Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications is a comprehensive guide to these methods and their various applications in recent years. Due to the attractive features of rapid convergence, high accuracy, and computational efficiency, the differential quadrature method and its based element methods are increasingly being used to study problems in the area of structural mechanics, such as static, buckling and vibration problems of composite structures and functional material structures. This book covers new developments and their applications in detail, with accompanying FORTRAN and MATLAB programs to help you overcome difficult programming challenges. It summarises the variety of different quadrature formulations that can be found by varying the degree of polynomials, the treatment of boundary conditions and employing regular or irregular grid points, to help you choose the correct method for solving practical problems. - Offers a clear explanation of both the theory and many applications of DQM to structural analyses - Discusses and illustrates reliable ways to apply multiple boundary conditions and develop reliable grid distributions - Supported by FORTRAN and MATLAB programs, including subroutines to compute grid distributions and weighting coefficients

Generalized Differential and Integral Quadrature

Generalized Differential and Integral Quadrature PDF Author: Francesco Tornabene
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 689

Get Book Here

Book Description
The main aim of this book is to analyze the mathematical fundamentals and the main features of the Generalized Differential Quadrature (GDQ) and Generalized Integral Quadrature (GIQ) techniques. Furthermore, another interesting aim of the present book is to shown that from the two numerical techniques mentioned above it is possible to derive two different approaches such as the Strong and Weak Finite Element Methods (SFEM and WFEM), that will be used to solve various structural problems and arbitrarily shaped structures. A general approach to the Differential Quadrature is proposed. The weighting coefficients for different basis functions and grid distributions are determined. Furthermore, the expressions of the principal approximating polynomials and grid distributions, available in the literature, are shown. Besides the classic orthogonal polynomials, a new class of basis functions, which depend on the radial distance between the discretization points, is presented. They are known as Radial Basis Functions (or RBFs). The general expressions for the derivative evaluation can be utilized in the local form to reduce the computational cost. From this concept the Local Generalized Differential Quadrature (LGDQ) method is derived. The Generalized Integral Quadrature (GIQ) technique can be used employing several basis functions, without any restriction on the point distributions for the given definition domain. To better underline these concepts some classical numerical integration schemes are reported, such as the trapezoidal rule or the Simpson method. An alternative approach based on Taylor series is also illustrated to approximate integrals. This technique is named as Generalized Taylor-based Integral Quadrature (GTIQ) method. The major structural theories for the analysis of the mechanical behavior of various structures are presented in depth in the book. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. Generally speaking, two formulations of the same system of governing equations can be developed, which are respectively the strong and weak (or variational) formulations. Once the governing equations that rule a generic structural problem are obtained, together with the corresponding boundary conditions, a differential system is written. In particular, the Strong Formulation (SF) of the governing equations is obtained. The differentiability requirement, instead, is reduced through a weighted integral statement if the corresponding Weak Formulation (WF) of the governing equations is developed. Thus, an equivalent integral formulation is derived, starting directly from the previous one. In particular, the formulation in hand is obtained by introducing a Lagrangian approximation of the degrees of freedom of the problem. The need of studying arbitrarily shaped domains or characterized by mechanical and geometrical discontinuities leads to the development of new numerical approaches that divide the structure in finite elements. Then, the strong form or the weak form of the fundamental equations are solved inside each element. The fundamental aspects of this technique, which the author defined respectively Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are presented in the book.

Differential Quadrature and Its Application in Engineering

Differential Quadrature and Its Application in Engineering PDF Author: Chang Shu
Publisher: Springer Science & Business Media
ISBN: 1447104072
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description
In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.

An Introduction to Nonlinear Finite Element Analysis

An Introduction to Nonlinear Finite Element Analysis PDF Author: Junuthula Narasimha Reddy
Publisher:
ISBN: 0199641757
Category : Finite element method
Languages : en
Pages : 721

Get Book Here

Book Description
The second edition of An Introduction to Nonlinear Finite Element Analysis has the same objective as the first edition, namely, to facilitate an easy and thorough understanding of the details that are involved in the theoretical formulation, finite element model development, and solutions of nonlinear problems. The book offers an easy-to-understand treatment of the subject of nonlinear finite element analysis, which includes element development from mathematical models and numerical evaluation of the underlying physics. The new edition is extensively reorganized and contains substantial amounts of new material. Chapter 1 in the second edition contains a section on applied functional analysis. Chapter 2 on nonlinear continuum mechanics is entirely new. Chapters 3 through 8 in the new edition correspond to Chapter 2 through 8 of the first edition, but with additional explanations, examples, and exercise problems. Material on time dependent problems from Chapter 8 of the first edition is absorbed into Chapters 4 through 8 of the new edition. Chapter 9 is extensively revised and it contains up to date developments in the large deformation analysis of isotropic, composite and functionally graded shells. Chapter 10 of the first edition on material nonlinearity and coupled problems is reorganized in the second edition by moving the material on solid mechanics to Chapter 12 in the new edition and material on coupled problems to the new chapter, Chapter 10, on weak-form Galerkin finite element models of viscous incompressible fluids. Finally, Chapter 11 in the second edition is entirely new and devoted to least-squares finite element models of viscous incompressible fluids. Chapter 12 of the second edition is enlarged to contain finite element models of viscoelastic beams. In general, all of the chapters of the second edition contain additional explanations, detailed example problems, and additional exercise problems. Although all of the progr

Computational Mechanics ’88

Computational Mechanics ’88 PDF Author: S.N. Atluri
Publisher: Springer Science & Business Media
ISBN: 3642613810
Category : Science
Languages : en
Pages : 1775

Get Book Here

Book Description
The aim of this Conference was to become a forum for discussion of both academic and industrial research in those areas of computational engineering science and mechanics which involve and enrich the rational application of computers, numerical methods, and mechanics, in modern technology. The papers presented at this Conference cover the following topics: Solid and Structural Mechanics, Constitutive Modelling, Inelastic and Finite Deformation Response, Transient Analysis, Structural Control and Optimization, Fracture Mechanics and Structural Integrity, Computational Fluid Dynamics, Compressible and Incompressible Flow, Aerodynamics, Transport Phenomena, Heat Transfer and Solidification, Electromagnetic Field, Related Soil Mechanics and MHD, Modern Variational Methods, Biomechanics, and Off-Shore-Structural Mechanics.

Applied Mechanics Reviews

Applied Mechanics Reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 776

Get Book Here

Book Description


Advanced Aerospace Materials

Advanced Aerospace Materials PDF Author: Haim Abramovich
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110798727
Category : Technology & Engineering
Languages : en
Pages : 484

Get Book Here

Book Description
This book is for engineers and students of aerospace, materials and mechanical engineering. It covers the transition from aluminum to composite materials for aerospace structures and includes advanced analyses used in industries. New in the 2nd Edition is material on morphing structures, large deflection plates, nondestructive methods, vibration correlation technique for shear loaded plates, vibrations to measure physical properties, and more.

Differential Quadrature and Its Application in Engineering

Differential Quadrature and Its Application in Engineering PDF Author: Chang Shu
Publisher: Springer Science & Business Media
ISBN: 9781852332099
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.

Mechcomp2

Mechcomp2 PDF Author: Antonio J.M. Ferreira
Publisher: Società Editrice Esculapio
ISBN: 8874889631
Category : Technology & Engineering
Languages : en
Pages : 204

Get Book Here

Book Description
Composites materials have aroused a great interest over the last few decades. Several applications of fibrous composites, functionally graded materials, laminated composites, nano-structured reinforcements, morphing structures, can be found in many engineering fields, such as aerospace, mechanical, naval and civil engineering. The necessity of lightweight structures, smart and adaptive systems, high-level strength, have led both the academic research and the manufacturing development to a recurring employment of these materials. Many journal papers and technical notes have been published extensively over the last seventy years in international scientific journals of different engineering fields. For this reason, the establishment of this second edition of Mechanics of Composites International Conference has appeared appropriate to continue what has been begun during the first edition occurred in 2014 at Stony Brook University (USA). MECHCOMP wants to be an occasion for many researchers from each part of the globe to meet and discuss about the recent advancements regarding the use of composite structures. As a proof of this event, which has taken place in Porto (Portugal), selected plenary and key-note lectures have been collected in the present book.