Nonlinear Burn Condition and Kinetic Profile Control in Tokamak Fusion Reactors

Nonlinear Burn Condition and Kinetic Profile Control in Tokamak Fusion Reactors PDF Author: Mark D. Boyer II
Publisher:
ISBN: 9781303658976
Category :
Languages : en
Pages : 281

Get Book Here

Book Description
One of the most promising devices for realizing power production through nuclear fusion is the tokamak. In order to maximize performance, it is preferable that tokamaks achieve operating scenarios characterized by good plasma confinement, improved magnetohydrodynamic stability, and a largely non-inductively driven plasma current. Such scenarios could enable steady-state reactor operation with high fusion gain, the ratio of fusion power produced to the external heating power needed to sustain reactions. There are many experimental tokamaks around the world, each exploring different facets of plasma physics and fusion technology. These experiments have reached the point where the power released from fusion is nearly equal to the power input required to heat the plasma. The next experimental step is ITER, which aims to reach a fusion gain exceeding ten for short pulses, and to sustain a gain of five for longer pulses (around 1000 s). In order for ITER to be a success, several challenging control engineering problems must be addressed. Among these challenges is to precisely regulate the plasma density and temperature, or burn condition. Due to the nonlinear and coupled dynamics of the system, modulation of the burn condition (either during ramp-up/shut-down or in response to changing power demands) without a well designed control scheme could result in undesirable transient performance. Feedback control will also be necessary for responding to unexpected changes in plasma confinement, impurity content, or other parameters, which could significantly alter the burn condition during operation. Furthermore, although stable operating points exist for most confinement scalings, certain conditions can lead to thermal instabilities. Such instabilities can either lead to quenching or a thermal excursion in which the system moves to a higher temperature equilibrium point. In any of these situations, disruptive plasma instabilities could be triggered, stopping operation and potentially causing damage to the confinement vessel. In this work, the problem of burn condition control is addressed through the design of a nonlinear control law guaranteeing stability of desired equilibria. Multiple actuation methods, including auxiliary heating, isotopic fueling, and impurity injection, are used to ensure the burn condition is regulated even when actuators saturate. An adaptive control scheme is used to handle model uncertainty, and an online optimization scheme is proposed to ensure that the plasma is driven to an operating point that minimizes an arbitrary cost function. Due to the possible limited availability of diagnostic systems in ITER and future reactors, an output feedback control scheme is also proposed that combines the nonlinear controller with an observer that estimates the states of the burning plasma system based on available measurements. Finally, the control scheme is tested using the integrated modeling code METIS. The control of spatial profiles of parameters, including current, density, and temperature, is also an important challenge in fusion research, due to their effect on MHD stability, non-inductive current drive, and fusion power. In this work, the problem of kinetic profile control in burning plasmas is addressed through a nonlinear boundary feedback control law designed using a technique called backstepping. A novel implementation of the backstepping technique is used that enables the use of both boundary and interior actuation. The backstepping technique is then applied to the problem of current profile control in both low-confinement and high-confinement mode discharges in the DIII-D tokamak based on a first-principles-driven model of the current profile evolution. Both designs are demonstrated in simulations and experimental tests.

Nonlinear Burn Condition and Kinetic Profile Control in Tokamak Fusion Reactors

Nonlinear Burn Condition and Kinetic Profile Control in Tokamak Fusion Reactors PDF Author: Mark D. Boyer II
Publisher:
ISBN: 9781303658976
Category :
Languages : en
Pages : 281

Get Book Here

Book Description
One of the most promising devices for realizing power production through nuclear fusion is the tokamak. In order to maximize performance, it is preferable that tokamaks achieve operating scenarios characterized by good plasma confinement, improved magnetohydrodynamic stability, and a largely non-inductively driven plasma current. Such scenarios could enable steady-state reactor operation with high fusion gain, the ratio of fusion power produced to the external heating power needed to sustain reactions. There are many experimental tokamaks around the world, each exploring different facets of plasma physics and fusion technology. These experiments have reached the point where the power released from fusion is nearly equal to the power input required to heat the plasma. The next experimental step is ITER, which aims to reach a fusion gain exceeding ten for short pulses, and to sustain a gain of five for longer pulses (around 1000 s). In order for ITER to be a success, several challenging control engineering problems must be addressed. Among these challenges is to precisely regulate the plasma density and temperature, or burn condition. Due to the nonlinear and coupled dynamics of the system, modulation of the burn condition (either during ramp-up/shut-down or in response to changing power demands) without a well designed control scheme could result in undesirable transient performance. Feedback control will also be necessary for responding to unexpected changes in plasma confinement, impurity content, or other parameters, which could significantly alter the burn condition during operation. Furthermore, although stable operating points exist for most confinement scalings, certain conditions can lead to thermal instabilities. Such instabilities can either lead to quenching or a thermal excursion in which the system moves to a higher temperature equilibrium point. In any of these situations, disruptive plasma instabilities could be triggered, stopping operation and potentially causing damage to the confinement vessel. In this work, the problem of burn condition control is addressed through the design of a nonlinear control law guaranteeing stability of desired equilibria. Multiple actuation methods, including auxiliary heating, isotopic fueling, and impurity injection, are used to ensure the burn condition is regulated even when actuators saturate. An adaptive control scheme is used to handle model uncertainty, and an online optimization scheme is proposed to ensure that the plasma is driven to an operating point that minimizes an arbitrary cost function. Due to the possible limited availability of diagnostic systems in ITER and future reactors, an output feedback control scheme is also proposed that combines the nonlinear controller with an observer that estimates the states of the burning plasma system based on available measurements. Finally, the control scheme is tested using the integrated modeling code METIS. The control of spatial profiles of parameters, including current, density, and temperature, is also an important challenge in fusion research, due to their effect on MHD stability, non-inductive current drive, and fusion power. In this work, the problem of kinetic profile control in burning plasmas is addressed through a nonlinear boundary feedback control law designed using a technique called backstepping. A novel implementation of the backstepping technique is used that enables the use of both boundary and interior actuation. The backstepping technique is then applied to the problem of current profile control in both low-confinement and high-confinement mode discharges in the DIII-D tokamak based on a first-principles-driven model of the current profile evolution. Both designs are demonstrated in simulations and experimental tests.

Nonlinear Control in Fusion Reactors

Nonlinear Control in Fusion Reactors PDF Author: Eugenio Schuster
Publisher:
ISBN:
Category :
Languages : en
Pages : 456

Get Book Here

Book Description


Safety Factor Profile Control in a Tokamak

Safety Factor Profile Control in a Tokamak PDF Author: Federico Bribiesca Argomedo
Publisher: Springer Science & Business Media
ISBN: 3319019589
Category : Technology & Engineering
Languages : en
Pages : 105

Get Book Here

Book Description
Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium. Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs). The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The text then tackles the construction of an input-to-state-stability Lyapunov function for the infinite-dimensional system that handles the medium anisotropy and provides a common basis for analytical robustness results. This function is used as a control-Lyapunov function and allows the amplitude and nonlinear shape constraints in the control action to be dealt with. Finally, the Brief addresses important application- and implementation-specific concerns. In particular, the coupling of the PDE and the finite-dimensional subsystem representing the evolution of the boundary condition (magnetic coils) and the introduction of profile-reconstruction delays in the control loop (induced by solving a 2-D inverse problem for computing the magnetic flux) is analyzed. Simulation results are presented for various operation scenarios on Tore Supra (simulated with METIS) and on TCV (simulated with RAPTOR). Control of the Safety Factor Profile in a Tokamak will be of interest to both academic and industrially-based researchers interested in nuclear energy and plasma-containment control systems, and graduate students in nuclear and control engineering.

Physics of Burn Control in Tokamak Reactors

Physics of Burn Control in Tokamak Reactors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A one-dimensional multifluid transport code was used to investigate some of the critical physics considerations for long burn times in a tokamak fusion reactor. Among these are the effects of helium ash build-up, toroidal field ripple, and fueling in the presence of a divertor. Particle and energy transport models are based on extrapolations from present day devices.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 806

Get Book Here

Book Description
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 740

Get Book Here

Book Description


Fusion Energy Update

Fusion Energy Update PDF Author:
Publisher:
ISBN:
Category : Controlled fusion
Languages : en
Pages : 144

Get Book Here

Book Description


Fusion Science and Technology

Fusion Science and Technology PDF Author:
Publisher:
ISBN:
Category : Fusion reactors
Languages : en
Pages : 648

Get Book Here

Book Description


Magnetic Fusion Technology

Magnetic Fusion Technology PDF Author: Thomas J. Dolan
Publisher: Springer Science & Business Media
ISBN: 1447155564
Category : Technology & Engineering
Languages : en
Pages : 816

Get Book Here

Book Description
Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Burning Plasma

Burning Plasma PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309166918
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Significant advances have been made in fusion science, and a point has been reached when we need to decide if the United States is ready to begin a burning plasma experiment. A burning plasmaâ€"in which at least 50 percent of the energy to drive the fusion reaction is generated internallyâ€"is an essential step to reach the goal of fusion power generation. The Burning Plasma Assessment Committee was formed to provide advice on this decision. The committee concluded that there is high confidence in the readiness to proceed with the burning plasma step. The International Thermonuclear Experimental Reactor (ITER), with the United States as a significant partner, was the best choice. Once a commitment to ITER is made, fulfilling it should become the highest priority of the U.S. fusion research program. A funding trajectory is required that both captures the benefits of joining ITER and retains a strong scientific focus on the long-range goals of the program. Addition of the ITER project will require that the content, scope, and level of U.S. fusion activity be defined by program balancing through a priority-setting process initiated by the Office of Fusion Energy Science.