A Simple Non-Euclidean Geometry and Its Physical Basis

A Simple Non-Euclidean Geometry and Its Physical Basis PDF Author: I.M. Yaglom
Publisher: Springer Science & Business Media
ISBN: 146126135X
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
There are many technical and popular accounts, both in Russian and in other languages, of the non-Euclidean geometry of Lobachevsky and Bolyai, a few of which are listed in the Bibliography. This geometry, also called hyperbolic geometry, is part of the required subject matter of many mathematics departments in universities and teachers' colleges-a reflec tion of the view that familiarity with the elements of hyperbolic geometry is a useful part of the background of future high school teachers. Much attention is paid to hyperbolic geometry by school mathematics clubs. Some mathematicians and educators concerned with reform of the high school curriculum believe that the required part of the curriculum should include elements of hyperbolic geometry, and that the optional part of the curriculum should include a topic related to hyperbolic geometry. I The broad interest in hyperbolic geometry is not surprising. This interest has little to do with mathematical and scientific applications of hyperbolic geometry, since the applications (for instance, in the theory of automorphic functions) are rather specialized, and are likely to be encountered by very few of the many students who conscientiously study (and then present to examiners) the definition of parallels in hyperbolic geometry and the special features of configurations of lines in the hyperbolic plane. The principal reason for the interest in hyperbolic geometry is the important fact of "non-uniqueness" of geometry; of the existence of many geometric systems.

A Simple Non-Euclidean Geometry and Its Physical Basis

A Simple Non-Euclidean Geometry and Its Physical Basis PDF Author: I.M. Yaglom
Publisher: Springer Science & Business Media
ISBN: 146126135X
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
There are many technical and popular accounts, both in Russian and in other languages, of the non-Euclidean geometry of Lobachevsky and Bolyai, a few of which are listed in the Bibliography. This geometry, also called hyperbolic geometry, is part of the required subject matter of many mathematics departments in universities and teachers' colleges-a reflec tion of the view that familiarity with the elements of hyperbolic geometry is a useful part of the background of future high school teachers. Much attention is paid to hyperbolic geometry by school mathematics clubs. Some mathematicians and educators concerned with reform of the high school curriculum believe that the required part of the curriculum should include elements of hyperbolic geometry, and that the optional part of the curriculum should include a topic related to hyperbolic geometry. I The broad interest in hyperbolic geometry is not surprising. This interest has little to do with mathematical and scientific applications of hyperbolic geometry, since the applications (for instance, in the theory of automorphic functions) are rather specialized, and are likely to be encountered by very few of the many students who conscientiously study (and then present to examiners) the definition of parallels in hyperbolic geometry and the special features of configurations of lines in the hyperbolic plane. The principal reason for the interest in hyperbolic geometry is the important fact of "non-uniqueness" of geometry; of the existence of many geometric systems.

Geometry with an Introduction to Cosmic Topology

Geometry with an Introduction to Cosmic Topology PDF Author: Michael P. Hitchman
Publisher: Jones & Bartlett Learning
ISBN: 0763754579
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.

The Wraparound Universe

The Wraparound Universe PDF Author: Jean-Pierre Luminet
Publisher: CRC Press
ISBN: 1439864969
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
What shape is the universe? Is it curved and closed in on itself? Is it expanding? Where is it headed? Could space be wrapped around itself, such that it produces ghost images of faraway galaxies? Such are the questions posed by Jean-Pierre Luminet in The Wraparound Universe, which he then addresses in clear and accessible language. An expert in bl

The Shape of Space

The Shape of Space PDF Author: Jeffrey R. Weeks
Publisher: CRC Press
ISBN: 0824748379
Category : Mathematics
Languages : en
Pages : 279

Get Book Here

Book Description
Maintaining the standard of excellence set by the previous edition, this textbook covers the basic geometry of two- and three-dimensional spaces Written by a master expositor, leading researcher in the field, and MacArthur Fellow, it includes experiments to determine the true shape of the universe and contains illustrated examples and engaging exercises that teach mind-expanding ideas in an intuitive and informal way. Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.

Euclid's Elements

Euclid's Elements PDF Author: Euclid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544

Get Book Here

Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.

The Elements of Non-Euclidean Geometry

The Elements of Non-Euclidean Geometry PDF Author: Duncan M'Laren Young Sommerville
Publisher:
ISBN:
Category : Bell's mathematical series for schools and colleges
Languages : en
Pages : 588

Get Book Here

Book Description


Metric Spaces of Non-Positive Curvature

Metric Spaces of Non-Positive Curvature PDF Author: Martin R. Bridson
Publisher: Springer Science & Business Media
ISBN: 3662124947
Category : Mathematics
Languages : en
Pages : 665

Get Book Here

Book Description
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.

A New Perspective on Relativity

A New Perspective on Relativity PDF Author: Bernard H. Lavenda
Publisher: World Scientific
ISBN: 9814340480
Category : Science
Languages : en
Pages : 695

Get Book Here

Book Description
Starting off from noneuclidean geometries, apart from the method of Einstein's equations, this book derives and describes the phenomena of gravitation and diffraction. A historical account is presented, exposing the missing link in Einstein's construction of the theory of general relativity: the uniformly rotating disc, together with his failure to realize, that the Beltrami metric of hyperbolic geometry with constant curvature describes exactly the uniform acceleration observed. This book also explores these questions: * How does time bend? * Why should gravity propagate at the speed of light? * How does the expansion function of the universe relate to the absolute constant of the noneuclidean geometries? * Why was the Sagnac effect ignored? * Can Maxwell's equations accommodate mass? * Is there an inertia due solely to polarization? * Can objects expand in elliptic geometry like they contract in hyperbolic geometry?

Flatterland

Flatterland PDF Author: Ian Stewart
Publisher: ReadHowYouWant.com
ISBN: 1458716546
Category : Fiction
Languages : en
Pages : 466

Get Book Here

Book Description
First there was Edwin A. Abbott's remarkable Flatland, published in 1884, and one of the all-time classics of popular mathematics. Now, from mathematician and accomplished science writer Ian Stewart, comes what Nature calls "a superb sequel." Through larger-than-life characters and an inspired story line, Flatterland explores our present understanding of the shape and origins of the universe, the nature of space, time, and matter, as well as modern geometries and their applications. The journey begins when our heroine, Victoria Line, comes upon her great-great-grandfather A. Square's diary, hidden in the attic. The writings help her to contact the Space Hopper, who tempts her away from her home and family in Flatland and becomes her guide and mentor through ten dimensions. In the tradition of Alice in Wonderland and The Phantom Toll Booth, this magnificent investigation into the nature of reality is destined to become a modern classic.

Geometry from a Differentiable Viewpoint

Geometry from a Differentiable Viewpoint PDF Author: John McCleary
Publisher: Cambridge University Press
ISBN: 0521116074
Category : Mathematics
Languages : en
Pages : 375

Get Book Here

Book Description
A thoroughly revised second edition of a textbook for a first course in differential/modern geometry that introduces methods within a historical context.