Non-contact Ultrasonic Spectroscopy Measurement of Elastic Constants and Ultrasonic Attenuation

Non-contact Ultrasonic Spectroscopy Measurement of Elastic Constants and Ultrasonic Attenuation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
We have developed an ultrasonic spectroscopy method for measuring the elastic constants of solids in hostile environments and over a broad temperature regime. The sample is cut as a rectangular parallelepiped, approximately 1 mm3 in volume. One or two of the sample surfaces are coated with a thin film of a magnetostrictive material such as nickel. The sample is placed coaxially with two solenoids. One solenoid is used to generate an AC magnetic field of small amplitude which stretches the films. By sweeping the frequency of this field, the sample is excited successively into its various mechanical resonance modes. The second solenoid detects the mechanical resonances. The elastic constants are then deduced from the spectrum of mechanical resonances measured at constant temperature. The internal friction is deduced from the width of the resonance peaks. Because the technique is strictly non-contact (the sample may be encapsulated in a fused silica tube), it is deal for measuring elastic constants in hostile environments or under controlled atmospheres. In its present version the system allows us to measure the elastic constants and ultrasonic attenuation of a given sample between 80 and 100 K. The operation of the system is exemplified by measurements on amorphous Ni0P20 and crystalline Ti60Cr40. 17 refs., 6 figs.

Non-contact Ultrasonic Spectroscopy Measurement of Elastic Constants and Ultrasonic Attenuation

Non-contact Ultrasonic Spectroscopy Measurement of Elastic Constants and Ultrasonic Attenuation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
We have developed an ultrasonic spectroscopy method for measuring the elastic constants of solids in hostile environments and over a broad temperature regime. The sample is cut as a rectangular parallelepiped, approximately 1 mm3 in volume. One or two of the sample surfaces are coated with a thin film of a magnetostrictive material such as nickel. The sample is placed coaxially with two solenoids. One solenoid is used to generate an AC magnetic field of small amplitude which stretches the films. By sweeping the frequency of this field, the sample is excited successively into its various mechanical resonance modes. The second solenoid detects the mechanical resonances. The elastic constants are then deduced from the spectrum of mechanical resonances measured at constant temperature. The internal friction is deduced from the width of the resonance peaks. Because the technique is strictly non-contact (the sample may be encapsulated in a fused silica tube), it is deal for measuring elastic constants in hostile environments or under controlled atmospheres. In its present version the system allows us to measure the elastic constants and ultrasonic attenuation of a given sample between 80 and 100 K. The operation of the system is exemplified by measurements on amorphous Ni0P20 and crystalline Ti60Cr40. 17 refs., 6 figs.

Electromagnetic Acoustic Transducers

Electromagnetic Acoustic Transducers PDF Author: Masahiko Hirao
Publisher: Springer
ISBN: 443156036X
Category : Technology & Engineering
Languages : en
Pages : 382

Get Book Here

Book Description
This second edition provides comprehensive information on electromagnetic acoustic transducers (EMATs), from the theory and physical principles of EMATs to the construction of systems and their applications to scientific and industrial ultrasonic measurements on materials. The original version has been complemented with selected ideas on ultrasonic measurement that have emerged since the first edition was released. The book is divided into four parts: PART I offers a self-contained description of the basic elements of coupling mechanisms along with the practical designing of EMATs for various purposes. Several implementations to compensate for EMATs’ low transfer efficiency are provided, along with useful tips on how to make an EMAT. PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of EMATs’ contactless nature and is the most successful amplification mechanism for precise measurements of velocity and attenuation. PART III applies EMAR to studying physical acoustics. New measurements have emerged with regard to four major subjects: in situ monitoring of dislocation behavior, determination of anisotropic elastic constants, pointwise elasticity mapping (RUM), and acoustic nonlinearity evolution. PART IV deals with a variety of individual issues encountered in industrial applications, for which the EMATs are believed to be the best solutions. This is proven by a number of field applications.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892

Get Book Here

Book Description


Ultrasonic Methods in Solid State Physics

Ultrasonic Methods in Solid State Physics PDF Author: Rohn Truell
Publisher: Academic Press
ISBN: 148327599X
Category : Science
Languages : en
Pages : 479

Get Book Here

Book Description
Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techniques of ultrasonic pulse echo measurements, and the physics of ultrasonically measurable properties of solids. It is hoped that this book will provide the reader with the special background necessary to read critically the many research papers and special articles concerned with the use of ultrasonic methods in solid state physics. The book is intended to help the person beginning work in this field. At the same time, it will also be useful to those actively involved in such work. An attempt has been made to provide a fairly general and unified treatment suitable for graduate students and others without extensive experience.

Ultrasonic Spectroscopy

Ultrasonic Spectroscopy PDF Author: Robert G. Leisure
Publisher: Cambridge University Press
ISBN: 1108228712
Category : Science
Languages : en
Pages : 249

Get Book Here

Book Description
Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

Ultrasound Spectroscopy

Ultrasound Spectroscopy PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Resonant Ultrasound Spectroscopy (RUS) is a simple technique for measuring the second-order elastic constants and ultrasonic attenuation of solids. The technique is based on measuring the spectrum of mechanical resonances for a sample of known shape (usually a sphere, cylinder, or parallelepiped). This spectrum cannot be deconvoluted to deduce the elastic constants. Instead, an approximate spectrum is calculated from the known sample dimensions, its mass, and a set of 'guessed' elastic constants. A multidimensional minimization of the rms difference between the measured and calculated spectra enables us to deduce all the elastic constants of the solid from a single frequency scan. Currently, the technique can be applied to crystals of orthorhombic symmetry (9 elastic constants) or higher using desktop computers and software developed for this purpose. Composite materials, especially fiber composites, can take full advantage of the RUS technique as they typically have low symmetry. In this paper we summarize the RUS technique and provide examples of its application to the elastic characterization of both fiber reinforced MMC's, and fiber reinforced PMC's.

Ultrasonic Measurement Methods

Ultrasonic Measurement Methods PDF Author:
Publisher: Elsevier
ISBN: 0323138322
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
Ultrasonic Measurement Methods describes methods used in ultrasonic measurements and covers topics ranging from radiated fields of ultrasonic transducers to the measurement of ultrasonic velocity and ultrasonic attenuation, along with the physical principles of measurements with electromagnetic-acoustic transducers (EMATs). Optical detection of ultrasound and measurement of the electrical characteristics of piezoelectric devices are also examined. Comprised of seven chapters, this volume begins with an analysis of the radiated fields of ultrasonic transducers, followed by a discussion on the measurement of ultrasonic velocity and attenuation. The next chapter describes the physical principles of measurement with EMATs and the advantages of such devices based on their couplant-free operation. Optical detection of ultrasound is then considered, together with the problem of measuring the electrical characteristics of piezoelectric resonators and standard methods for obtaining the equivalent electrical parameter values. The final chapter is devoted to ultrasonic pulse scattering in solids and highlights many fascinating examples of wave scattering, some of which are accompanied by theoretical analysis. This book will be of interest to physicists.

Ultrasonic Methods in Evaluation of Inhomogeneous Materials

Ultrasonic Methods in Evaluation of Inhomogeneous Materials PDF Author: A. Alippi
Publisher: Springer Science & Business Media
ISBN: 9400935757
Category : Technology & Engineering
Languages : en
Pages : 407

Get Book Here

Book Description
The purpose of the School, the content of which is reflected in this book, is to bring together experiences and knowledge of those acousticians who are particularly sensible to materials and their properties, specifically to those materials that may be called inhomo geneous. The two things together: acoustics and inhomogeneity, define factually a dimension less parameter, AI a, which is the ratio between the sound wavelength and the spatial length of the material where its physical characteristics notably change. An implicit defmition is, therefore, at hand for an inhomogeneous medium, which has the characteristic of a condi tioned definition and sets a looser constraint to the otherwise strict statement of invariance under translations. Composite, biologicai, porous, stratified materials are in the list of inhomogeneous materials, whose technological or structural interest has grown greatly in recent times. Ul trasonic waves offer a means for their investigation, which is valuable for it can be non destructive, continuous in time, spatially localized, dependent on the size of inhomoge neities.

Resonant Ultrasound Spectroscopy

Resonant Ultrasound Spectroscopy PDF Author: Albert Migliori
Publisher: Wiley-VCH
ISBN:
Category : Medical
Languages : en
Pages : 224

Get Book Here

Book Description
This first procedural guide to RUS, Resonant Ultrasound Spectroscopy offers a clear step-by-step tutorial, from developing a preliminary set of resonances to final determination of moduli. The book also contains intermediate computer outputs showing where mistakes are made, how to spot them, and how to remeasure to correct problems. Also a complete reference to the language of RUS, this book is full of clear explanations of every variable, concept, and hard-to-find term currently in use.

Ultrasonic Materials Characterization

Ultrasonic Materials Characterization PDF Author: Harold Berger
Publisher:
ISBN:
Category : Ultrasonic testing
Languages : en
Pages : 680

Get Book Here

Book Description