Non-commutative and Non-associative Algebra and Analysis Structures

Non-commutative and Non-associative Algebra and Analysis Structures PDF Author: Sergei Silvestrov
Publisher: Springer Nature
ISBN: 3031320093
Category : Mathematics
Languages : en
Pages : 833

Get Book Here

Book Description
The goal of the 2019 conference on Stochastic Processes and Algebraic Structures held in SPAS2019, Västerås, Sweden, from September 30th to October 2nd 2019 was to showcase the frontiers of research in several important topics of mathematics, mathematical statistics, and its applications. The conference has been organized along the following tracks: 1. Stochastic processes and modern statistical methods in theory and practice, 2. Engineering Mathematics, 3. Algebraic Structures and applications. This book highlights the latest advances in algebraic structures and applications focused on mathematical notions, methods, structures, concepts, problems, algorithms, and computational methods for the natural sciences, engineering, and modern technology. In particular, the book features mathematical methods and models from non-commutative and non-associative algebras and rings associated to generalizations of differential calculus, quantum deformations of algebras, Lie algebras, Lie superalgebras, color Lie algebras, Hom-algebras and their n-ary generalizations, semi-groups and group algebras, non-commutative and non-associative algebras and computational algebra interplay with q-special functions and q-analysis, topology, dynamical systems, representation theory, operator theory and functional analysis, applications of algebraic structures in coding theory, information analysis, geometry and probability theory. The book gathers selected, high-quality contributed chapters from several large research communities working on modern algebraic structures and their applications. The chapters cover both theory and applications, and are illustrated with a wealth of ideas, theorems, notions, proofs, examples, open problems, and results on the interplay of algebraic structures with other parts of Mathematics. The applications help readers grasp the material, and encourage them to develop new mathematical methods and concepts in their future research. Presenting new methods and results, reviews of cutting-edge research, open problems, and directions for future research, will serve as a source of inspiration for a broad range of researchers and students.

Non-commutative and Non-associative Algebra and Analysis Structures

Non-commutative and Non-associative Algebra and Analysis Structures PDF Author: Sergei Silvestrov
Publisher: Springer Nature
ISBN: 3031320093
Category : Mathematics
Languages : en
Pages : 833

Get Book Here

Book Description
The goal of the 2019 conference on Stochastic Processes and Algebraic Structures held in SPAS2019, Västerås, Sweden, from September 30th to October 2nd 2019 was to showcase the frontiers of research in several important topics of mathematics, mathematical statistics, and its applications. The conference has been organized along the following tracks: 1. Stochastic processes and modern statistical methods in theory and practice, 2. Engineering Mathematics, 3. Algebraic Structures and applications. This book highlights the latest advances in algebraic structures and applications focused on mathematical notions, methods, structures, concepts, problems, algorithms, and computational methods for the natural sciences, engineering, and modern technology. In particular, the book features mathematical methods and models from non-commutative and non-associative algebras and rings associated to generalizations of differential calculus, quantum deformations of algebras, Lie algebras, Lie superalgebras, color Lie algebras, Hom-algebras and their n-ary generalizations, semi-groups and group algebras, non-commutative and non-associative algebras and computational algebra interplay with q-special functions and q-analysis, topology, dynamical systems, representation theory, operator theory and functional analysis, applications of algebraic structures in coding theory, information analysis, geometry and probability theory. The book gathers selected, high-quality contributed chapters from several large research communities working on modern algebraic structures and their applications. The chapters cover both theory and applications, and are illustrated with a wealth of ideas, theorems, notions, proofs, examples, open problems, and results on the interplay of algebraic structures with other parts of Mathematics. The applications help readers grasp the material, and encourage them to develop new mathematical methods and concepts in their future research. Presenting new methods and results, reviews of cutting-edge research, open problems, and directions for future research, will serve as a source of inspiration for a broad range of researchers and students.

Associative and Non-Associative Algebras and Applications

Associative and Non-Associative Algebras and Applications PDF Author: Mercedes Siles Molina
Publisher: Springer Nature
ISBN: 3030352560
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
This book gathers together selected contributions presented at the 3rd Moroccan Andalusian Meeting on Algebras and their Applications, held in Chefchaouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic methods in associative and non-associative structures; homological and categorical methods in algebra; and history of mathematics. Covering topics such as rings and algebras, representation theory, number theory, operator algebras, category theory, group theory and information theory, it opens up new avenues of study for graduate students and young researchers. The findings presented also appeal to anyone interested in the fields of algebra and mathematical analysis.

Non-Associative and Non-Commutative Algebra and Operator Theory

Non-Associative and Non-Commutative Algebra and Operator Theory PDF Author: Cheikh Thiécoumbe Gueye
Publisher: Springer
ISBN: 9783319813943
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are relevant in research and development in coding theory, cryptography and quantum mechanics. The topics in this volume were presented at the Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory, held May 23—25, 2014 at Cheikh Anta Diop University in Dakar, Senegal in honor of Professor Amin Kaidi. The workshop was hosted by the university's Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications, in cooperation with the University of Almería and the University of Málaga. Dr. Kaidi's work focuses on non-associative rings and algebras, operator theory and functional analysis, and he has served as a mentor to a generation of mathematicians in Senegal and around the world.

Non-Associative Algebras and Related Topics

Non-Associative Algebras and Related Topics PDF Author: Helena Albuquerque
Publisher: Springer Nature
ISBN: 3031327071
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
This proceedings volume presents a selection of peer-reviewed contributions from the Second Non-Associative Algebras and Related Topics (NAART II) conference, which was held at the University of Coimbra, Portugal, from July 18–22, 2022. The conference was held in honor of mathematician Alberto Elduque, who has made significant contributions to the study of non-associative structures such as Lie, Jordan, and Leibniz algebras. The papers in this volume are organized into four parts: Lie algebras, superalgebras, and groups; Leibniz algebras; associative and Jordan algebras; and other non-associative structures. They cover a variety of topics, including classification problems, special maps (automorphisms, derivations, etc.), constructions that relate different structures, and representation theory. One of the unique features of NAART is that it is open to all topics related to non-associative algebras, including octonion algebras, composite algebras, Banach algebras, connections with geometry, applications in coding theory, combinatorial problems, and more. This diversity allows researchers from a range of fields to find the conference subjects interesting and discover connections with their own areas, even if they are not traditionally considered non-associative algebraists. Since its inception in 2011, NAART has been committed to fostering cross-disciplinary connections in the study of non-associative structures.

Algebraic Structures and Applications

Algebraic Structures and Applications PDF Author: Sergei Silvestrov
Publisher: Springer Nature
ISBN: 3030418502
Category : Mathematics
Languages : en
Pages : 976

Get Book Here

Book Description
This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas.

Geometric Models for Noncommutative Algebras

Geometric Models for Noncommutative Algebras PDF Author: Ana Cannas da Silva
Publisher: American Mathematical Soc.
ISBN: 9780821809525
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
The volume is based on a course, ``Geometric Models for Noncommutative Algebras'' taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras. Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids. Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.

Non-associative Structures and Other Related Structures

Non-associative Structures and Other Related Structures PDF Author: Florin Felix Nichita
Publisher: MDPI
ISBN: 3039362542
Category : Mathematics
Languages : en
Pages : 106

Get Book Here

Book Description
Leonhard Euler (1707–1783) was born in Basel, Switzerland. Euler's formula is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. When its variable is the number pi, Euler's formula evaluates to Euler's identity. On the other hand, the Yang–Baxter equation is considered the most beautiful equation by many scholars. In this book, we study connections between Euler’s formulas and the Yang–Baxter equation. Other interesting sections include: non-associative algebras with metagroup relations; branching functions for admissible representations of affine Lie Algebras; super-Virasoro algebras; dual numbers; UJLA structures; etc.

Noncommutative Geometry

Noncommutative Geometry PDF Author: Alain Connes
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

Introduction to Noncommutative Algebra

Introduction to Noncommutative Algebra PDF Author: Matej Brešar
Publisher: Springer
ISBN: 3319086936
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.

Algebra without Borders – Classical and Constructive Nonassociative Algebraic Structures

Algebra without Borders – Classical and Constructive Nonassociative Algebraic Structures PDF Author: Mahouton Norbert Hounkonnou
Publisher: Springer Nature
ISBN: 3031393341
Category : Mathematics
Languages : en
Pages : 600

Get Book Here

Book Description
This book gathers invited, peer-reviewed works presented at the 2021 edition of the Classical and Constructive Nonassociative Algebraic Structures: Foundations and Applications—CaCNAS: FA 2021, virtually held from June 30 to July 2, 2021, in dedication to the memory of Professor Nebojša Stevanović (1962-2009). The papers cover new trends in the field, focusing on the growing development of applications in other disciplines. These aspects interplay in the same cadence, promoting interactions between theory and applications, and between nonassociative algebraic structures and various fields in pure and applied mathematics. In this volume, the reader will find novel studies on topics such as left almost algebras, logical algebras, groupoids and their generalizations, algebraic geometry and its relations with quiver algebras, enumerative combinatorics, representation theory, fuzzy logic and foundation theory, fuzzy algebraic structures, group amalgams, computer-aided development and transformation of the theory of nonassociative algebraic structures, and applications within natural sciences and engineering. Researchers and graduate students in algebraic structures and their applications can hugely benefit from this book, which can also interest any researcher exploring multi-disciplinarity and complexity in the scientific realm.