Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms

Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms PDF Author: Michel Courtieu
Publisher: Springer
ISBN: 3540451781
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
This book, now in its 2nd edition, is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth. The given construction of these p-adic L-functions uses precise algebraic properties of the arithmetical Shimura differential operator. The book will be very useful for postgraduate students and for non-experts looking for a quick approach to a rapidly developing domain of algebraic number theory. This new edition is substantially revised to account for the new explanations that have emerged in the past 10 years of the main formulas for special L-values in terms of arithmetical theory of nearly holomorphic modular forms.

Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms

Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms PDF Author: Michel Courtieu
Publisher: Springer
ISBN: 3540451781
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
This book, now in its 2nd edition, is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth. The given construction of these p-adic L-functions uses precise algebraic properties of the arithmetical Shimura differential operator. The book will be very useful for postgraduate students and for non-experts looking for a quick approach to a rapidly developing domain of algebraic number theory. This new edition is substantially revised to account for the new explanations that have emerged in the past 10 years of the main formulas for special L-values in terms of arithmetical theory of nearly holomorphic modular forms.

Non-Archimedean L-Functions

Non-Archimedean L-Functions PDF Author: Alexei A. Panchishkin
Publisher: Springer
ISBN: 3662215411
Category : Mathematics
Languages : en
Pages : 167

Get Book Here

Book Description
1) p n=1 The set of arguments s for which ((s) is defined can be extended to all s E C,s :f:. 1, and we may regard C as the group of all continuous quasicharacters C = Hom(R~, c>

Motives

Motives PDF Author: Uwe Jannsen
Publisher: American Mathematical Soc.
ISBN: 9780821827994
Category : Mathematics
Languages : en
Pages : 696

Get Book Here

Book Description
Motives were introduced in the mid-1960s by Grothendieck to explain the analogies among the various cohomology theories for algebraic varieties, to play the role of the missing rational cohomology, and to provide a blueprint for proving Weil's conjectures about the zeta function of a variety over a finite field. Over the last ten years or so, researchers in various areas--Hodge theory, algebraic $K$-theory, polylogarithms, automorphic forms, $L$-functions, $ell$-adic representations, trigonometric sums, and algebraic cycles--have discovered that an enlarged (and in part conjectural) theory of ``mixed'' motives indicates and explains phenomena appearing in each area. Thus the theory holds the potential of enriching and unifying these areas. These two volumes contain the revised texts of nearly all the lectures presented at the AMS-IMS-SIAM Joint Summer Research Conference on Motives, held in Seattle, in 1991. A number of related works are also included, making for a total of forty-seven papers, from general introductions to specialized surveys to research papers.

Automorphic Forms and $L$-functions II

Automorphic Forms and $L$-functions II PDF Author: David Ginzburg
Publisher: American Mathematical Soc.
ISBN: 0821847082
Category : Mathematics
Languages : en
Pages : 339

Get Book Here

Book Description
Includes articles that represent global aspects of automorphic forms. This book covers topics such as: the trace formula; functoriality; representations of reductive groups over local fields; the relative trace formula and periods of automorphic forms; Rankin - Selberg convolutions and L-functions; and, p-adic L-functions.

Non-Archimedean L-functions of Siegel and Hilbert Modular Forms

Non-Archimedean L-functions of Siegel and Hilbert Modular Forms PDF Author: Alekseĭ Alekseevich Panchishkin
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 172

Get Book Here

Book Description


Iwasawa Theory and Its Perspective, Volume 2

Iwasawa Theory and Its Perspective, Volume 2 PDF Author: Tadashi Ochiai
Publisher: American Mathematical Society
ISBN: 1470456737
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation is to update the classical theory for class groups, taking into account the changed point of view on Iwasawa theory. The goal of this second part of the three-part publication is to explain various aspects of the cyclotomic Iwasawa theory of $p$-adic Galois representations.

The 1-2-3 of Modular Forms

The 1-2-3 of Modular Forms PDF Author: Jan Hendrik Bruinier
Publisher: Springer Science & Business Media
ISBN: 3540741194
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.

Modular Forms and Related Topics in Number Theory

Modular Forms and Related Topics in Number Theory PDF Author: B. Ramakrishnan
Publisher: Springer Nature
ISBN: 9811587191
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
This book collects the papers presented at the Conference on Number Theory, held at the Kerala School of Mathematics, Kozhikode, Kerala, India, from December 10–14, 2018. The conference aimed at bringing the active number theorists and researchers in automorphic forms and allied areas to demonstrate their current research works. This book benefits young research scholars, postdoctoral fellows, and young faculty members working in these areas of research.

Iwasawa Theory 2012

Iwasawa Theory 2012 PDF Author: Thanasis Bouganis
Publisher: Springer
ISBN: 3642552455
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
This is the fifth conference in a bi-annual series, following conferences in Besancon, Limoges, Irsee and Toronto. The meeting aims to bring together different strands of research in and closely related to the area of Iwasawa theory. During the week before the conference in a kind of summer school a series of preparatory lectures for young mathematicians was provided as an introduction to Iwasawa theory. Iwasawa theory is a modern and powerful branch of number theory and can be traced back to the Japanese mathematician Kenkichi Iwasawa, who introduced the systematic study of Z_p-extensions and p-adic L-functions, concentrating on the case of ideal class groups. Later this would be generalized to elliptic curves. Over the last few decades considerable progress has been made in automorphic Iwasawa theory, e.g. the proof of the Main Conjecture for GL(2) by Kato and Skinner & Urban. Techniques such as Hida’s theory of p-adic modular forms and big Galois representations play a crucial part. Also a noncommutative Iwasawa theory of arbitrary p-adic Lie extensions has been developed. This volume aims to present a snapshot of the state of art of Iwasawa theory as of 2012. In particular it offers an introduction to Iwasawa theory (based on a preparatory course by Chris Wuthrich) and a survey of the proof of Skinner & Urban (based on a lecture course by Xin Wan).

Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms

Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms PDF Author: Michel Courtieu
Publisher: Springer
ISBN: 9783540407294
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
This book, now in its 2nd edition, is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth. The given construction of these p-adic L-functions uses precise algebraic properties of the arithmetical Shimura differential operator. The book will be very useful for postgraduate students and for non-experts looking for a quick approach to a rapidly developing domain of algebraic number theory. This new edition is substantially revised to account for the new explanations that have emerged in the past 10 years of the main formulas for special L-values in terms of arithmetical theory of nearly holomorphic modular forms.