Author: José Mira
Publisher: Springer Science & Business Media
ISBN: 9783540567981
Category : Computers
Languages : en
Pages : 772
Book Description
Neural computation arises from the capacity of nervous tissue to process information and accumulate knowledge in an intelligent manner. Conventional computational machines have encountered enormous difficulties in duplicatingsuch functionalities. This has given rise to the development of Artificial Neural Networks where computation is distributed over a great number of local processing elements with a high degree of connectivityand in which external programming is replaced with supervised and unsupervised learning. The papers presented in this volume are carefully reviewed versions of the talks delivered at the International Workshop on Artificial Neural Networks (IWANN '93) organized by the Universities of Catalonia and the Spanish Open University at Madrid and held at Barcelona, Spain, in June 1993. The 111 papers are organized in seven sections: biological perspectives, mathematical models, learning, self-organizing networks, neural software, hardware implementation, and applications (in five subsections: signal processing and pattern recognition, communications, artificial vision, control and robotics, and other applications).
New Trends in Neural Computation
Handbook of Neural Computation
Author: Pijush Samui
Publisher: Academic Press
ISBN: 0128113197
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods
Publisher: Academic Press
ISBN: 0128113197
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods
Recent Trends in Computational Intelligence Enabled Research
Author: Siddhartha Bhattacharyya
Publisher: Academic Press
ISBN: 0323851797
Category : Computers
Languages : en
Pages : 420
Book Description
The field of computational intelligence has grown tremendously over that past five years, thanks to evolving soft computing and artificial intelligent methodologies, tools and techniques for envisaging the essence of intelligence embedded in real life observations. Consequently, scientists have been able to explain and understand real life processes and practices which previously often remain unexplored by virtue of their underlying imprecision, uncertainties and redundancies, and the unavailability of appropriate methods for describing the incompleteness and vagueness of information represented. With the advent of the field of computational intelligence, researchers are now able to explore and unearth the intelligence, otherwise insurmountable, embedded in the systems under consideration. Computational Intelligence is now not limited to only specific computational fields, it has made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design to name a few. Recent Trends in Computational Intelligence Enabled Research: Theoretical Foundations and Applications explores the use of this computational paradigm across a wide range of applied domains which handle meaningful information. Chapters investigate a broad spectrum of the applications of computational intelligence across different platforms and disciplines, expanding our knowledge base of various research initiatives in this direction. This volume aims to bring together researchers, engineers, developers and practitioners from academia and industry working in all major areas and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing. - Provides insights into the theory, algorithms, implementation, and application of computational intelligence techniques - Covers a wide range of applications of deep learning across various domains which are researching the applications of computational intelligence - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques
Publisher: Academic Press
ISBN: 0323851797
Category : Computers
Languages : en
Pages : 420
Book Description
The field of computational intelligence has grown tremendously over that past five years, thanks to evolving soft computing and artificial intelligent methodologies, tools and techniques for envisaging the essence of intelligence embedded in real life observations. Consequently, scientists have been able to explain and understand real life processes and practices which previously often remain unexplored by virtue of their underlying imprecision, uncertainties and redundancies, and the unavailability of appropriate methods for describing the incompleteness and vagueness of information represented. With the advent of the field of computational intelligence, researchers are now able to explore and unearth the intelligence, otherwise insurmountable, embedded in the systems under consideration. Computational Intelligence is now not limited to only specific computational fields, it has made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design to name a few. Recent Trends in Computational Intelligence Enabled Research: Theoretical Foundations and Applications explores the use of this computational paradigm across a wide range of applied domains which handle meaningful information. Chapters investigate a broad spectrum of the applications of computational intelligence across different platforms and disciplines, expanding our knowledge base of various research initiatives in this direction. This volume aims to bring together researchers, engineers, developers and practitioners from academia and industry working in all major areas and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing. - Provides insights into the theory, algorithms, implementation, and application of computational intelligence techniques - Covers a wide range of applications of deep learning across various domains which are researching the applications of computational intelligence - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques
Emerging Trends in Intelligent Computing and Informatics
Author: Faisal Saeed
Publisher: Springer Nature
ISBN: 3030335828
Category : Technology & Engineering
Languages : en
Pages : 1199
Book Description
This book presents the proceedings of the 4th International Conference of Reliable Information and Communication Technology 2019 (IRICT 2019), which was held in Pulai Springs Resort, Johor, Malaysia, on September 22–23, 2019. Featuring 109 papers, the book covers hot topics such as artificial intelligence and soft computing, data science and big data analytics, internet of things (IoT), intelligent communication systems, advances in information security, advances in information systems and software engineering.
Publisher: Springer Nature
ISBN: 3030335828
Category : Technology & Engineering
Languages : en
Pages : 1199
Book Description
This book presents the proceedings of the 4th International Conference of Reliable Information and Communication Technology 2019 (IRICT 2019), which was held in Pulai Springs Resort, Johor, Malaysia, on September 22–23, 2019. Featuring 109 papers, the book covers hot topics such as artificial intelligence and soft computing, data science and big data analytics, internet of things (IoT), intelligent communication systems, advances in information security, advances in information systems and software engineering.
Neural Codes and Distributed Representations
Author: L. F. Abbott
Publisher: MIT Press
ISBN: 9780262511001
Category : Computers
Languages : en
Pages : 378
Book Description
Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. The present volume focuses on neural codes and representations, topics of broad interest to neuroscientists and modelers. The topics addressed are: how neurons encode information through action potential firing patterns, how populations of neurons represent information, and how individual neurons use dendritic processing and biophysical properties of synapses to decode spike trains. The papers encompass a wide range of levels of investigation, from dendrites and neurons to networks and systems.
Publisher: MIT Press
ISBN: 9780262511001
Category : Computers
Languages : en
Pages : 378
Book Description
Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. The present volume focuses on neural codes and representations, topics of broad interest to neuroscientists and modelers. The topics addressed are: how neurons encode information through action potential firing patterns, how populations of neurons represent information, and how individual neurons use dendritic processing and biophysical properties of synapses to decode spike trains. The papers encompass a wide range of levels of investigation, from dendrites and neurons to networks and systems.
Rough Sets and Current Trends in Computing
Author: James J. Alpigini
Publisher: Springer
ISBN: 3540458131
Category : Computers
Languages : en
Pages : 654
Book Description
This volume contains the papers selected for presentation at the Third Inter- tional Conference on Rough Sets and Current Trends in Computing (RSCTC 2002) held at Penn State Great Valley, Malvern, Pennsylvania, U.S.A., 14–16 October 2002. Rough set theoryand its applications constitute a branch of soft computing that has exhibited a signi?cant growth rate during recent years. RSCTC 2002 provided a forum for exchanging ideas among manyresearchers in the rough set communityand in various areas of soft computing and served as a stimulus for mutual understanding and cooperation. In recent years, there have been a number of advances in rough set theoryand applications. Hence, we have witnessed a growing number of international workshops on rough sets and their applications. In addition, it should be observed that one of the beauties of rough sets and the rough set philosophyis that it tends to complement and reinforce research in manytraditional research areas and applications. This is the main reason that manyinternational conferences are now including rough sets into the list of topics.
Publisher: Springer
ISBN: 3540458131
Category : Computers
Languages : en
Pages : 654
Book Description
This volume contains the papers selected for presentation at the Third Inter- tional Conference on Rough Sets and Current Trends in Computing (RSCTC 2002) held at Penn State Great Valley, Malvern, Pennsylvania, U.S.A., 14–16 October 2002. Rough set theoryand its applications constitute a branch of soft computing that has exhibited a signi?cant growth rate during recent years. RSCTC 2002 provided a forum for exchanging ideas among manyresearchers in the rough set communityand in various areas of soft computing and served as a stimulus for mutual understanding and cooperation. In recent years, there have been a number of advances in rough set theoryand applications. Hence, we have witnessed a growing number of international workshops on rough sets and their applications. In addition, it should be observed that one of the beauties of rough sets and the rough set philosophyis that it tends to complement and reinforce research in manytraditional research areas and applications. This is the main reason that manyinternational conferences are now including rough sets into the list of topics.
Efficient Processing of Deep Neural Networks
Author: Vivienne Sze
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Rough Sets and Current Trends in Computing
Author: Shusaku Tsumoto
Publisher: Springer Science & Business Media
ISBN: 3540221174
Category : Computers
Languages : en
Pages : 871
Book Description
In recent years rough set theory has attracted the attention of many researchers and practitioners all over the world, who have contributed essentially to its development and applications. Weareobservingagrowingresearchinterestinthefoundationsofroughsets, including the various logical, mathematical and philosophical aspects of rough sets. Some relationships have already been established between rough sets and other approaches, and also with a wide range of hybrid systems. As a result, rough sets are linked with decision system modeling and analysis of complex systems, fuzzy sets, neural networks, evolutionary computing, data mining and knowledge discovery, pattern recognition, machine learning, and approximate reasoning. In particular, rough sets are used in probabilistic reasoning, granular computing (including information granule calculi based on rough mereology), intelligent control, intelligent agent modeling, identi?cation of autonomous s- tems, and process speci?cation. Methods based on rough set theory alone or in combination with other - proacheshavebeendiscoveredwith awide rangeofapplicationsinsuchareasas: acoustics, bioinformatics, business and ?nance, chemistry, computer engineering (e.g., data compression, digital image processing, digital signal processing, p- allel and distributed computer systems, sensor fusion, fractal engineering), de- sion analysis and systems, economics, electrical engineering (e.g., control, signal analysis, power systems), environmental studies, informatics, medicine, mole- lar biology, musicology, neurology, robotics, social science, software engineering, spatial visualization, Web engineering, and Web mining.
Publisher: Springer Science & Business Media
ISBN: 3540221174
Category : Computers
Languages : en
Pages : 871
Book Description
In recent years rough set theory has attracted the attention of many researchers and practitioners all over the world, who have contributed essentially to its development and applications. Weareobservingagrowingresearchinterestinthefoundationsofroughsets, including the various logical, mathematical and philosophical aspects of rough sets. Some relationships have already been established between rough sets and other approaches, and also with a wide range of hybrid systems. As a result, rough sets are linked with decision system modeling and analysis of complex systems, fuzzy sets, neural networks, evolutionary computing, data mining and knowledge discovery, pattern recognition, machine learning, and approximate reasoning. In particular, rough sets are used in probabilistic reasoning, granular computing (including information granule calculi based on rough mereology), intelligent control, intelligent agent modeling, identi?cation of autonomous s- tems, and process speci?cation. Methods based on rough set theory alone or in combination with other - proacheshavebeendiscoveredwith awide rangeofapplicationsinsuchareasas: acoustics, bioinformatics, business and ?nance, chemistry, computer engineering (e.g., data compression, digital image processing, digital signal processing, p- allel and distributed computer systems, sensor fusion, fractal engineering), de- sion analysis and systems, economics, electrical engineering (e.g., control, signal analysis, power systems), environmental studies, informatics, medicine, mole- lar biology, musicology, neurology, robotics, social science, software engineering, spatial visualization, Web engineering, and Web mining.
Neural Networks and Soft Computing
Author: Leszek Rutkowski
Publisher: Springer Science & Business Media
ISBN: 3790819026
Category : Computers
Languages : en
Pages : 935
Book Description
This volume presents new trends and developments in soft computing techniques. Topics include: neural networks, fuzzy systems, evolutionary computation, knowledge discovery, rough sets, and hybrid methods. It also covers various applications of soft computing techniques in economics, mechanics, medicine, automatics and image processing. The book contains contributions from internationally recognized scientists, such as Zadeh, Bubnicki, Pawlak, Amari, Batyrshin, Hirota, Koczy, Kosinski, Novák, S.-Y. Lee, Pedrycz, Raudys, Setiono, Sincak, Strumillo, Takagi, Usui, Wilamowski and Zurada. An excellent overview of soft computing methods and their applications.
Publisher: Springer Science & Business Media
ISBN: 3790819026
Category : Computers
Languages : en
Pages : 935
Book Description
This volume presents new trends and developments in soft computing techniques. Topics include: neural networks, fuzzy systems, evolutionary computation, knowledge discovery, rough sets, and hybrid methods. It also covers various applications of soft computing techniques in economics, mechanics, medicine, automatics and image processing. The book contains contributions from internationally recognized scientists, such as Zadeh, Bubnicki, Pawlak, Amari, Batyrshin, Hirota, Koczy, Kosinski, Novák, S.-Y. Lee, Pedrycz, Raudys, Setiono, Sincak, Strumillo, Takagi, Usui, Wilamowski and Zurada. An excellent overview of soft computing methods and their applications.
Recent Trends in Learning From Data
Author: Luca Oneto
Publisher: Springer
ISBN: 9783030438852
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
This book offers a timely snapshot and extensive practical and theoretical insights into the topic of learning from data. Based on the tutorials presented at the INNS Big Data and Deep Learning Conference, INNSBDDL2019, held on April 16-18, 2019, in Sestri Levante, Italy, the respective chapters cover advanced neural networks, deep architectures, and supervised and reinforcement machine learning models. They describe important theoretical concepts, presenting in detail all the necessary mathematical formalizations, and offer essential guidance on their use in current big data research.
Publisher: Springer
ISBN: 9783030438852
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
This book offers a timely snapshot and extensive practical and theoretical insights into the topic of learning from data. Based on the tutorials presented at the INNS Big Data and Deep Learning Conference, INNSBDDL2019, held on April 16-18, 2019, in Sestri Levante, Italy, the respective chapters cover advanced neural networks, deep architectures, and supervised and reinforcement machine learning models. They describe important theoretical concepts, presenting in detail all the necessary mathematical formalizations, and offer essential guidance on their use in current big data research.