New Detonation Concepts for Propulsion and Power Generation

New Detonation Concepts for Propulsion and Power Generation PDF Author: Eric M. Braun
Publisher:
ISBN:
Category : Combustion engineering
Languages : en
Pages :

Get Book Here

Book Description
A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal e ciency prediction of a detonation wave based on the work and heat speci ed by process path diagrams and a control volume analysis. A combined rst and second law analysis aids in understanding performance trends for di erent initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the ow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an ori ce connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed uidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected, the ori ce diameter, and the plenum cavity pressure. Results indicate that the detonation wave pressure temporarily interrupts the uidic valve supply, but the wave products can be quickly expelled by the fresh fuel supply to allow for refueling. The interruption time of the valve scales with injection and detonation wave pressure ratios as well as a characteristic time. The feasibility of using a detonation wave as a source for producing power in conjunction with a linear generator is considered. Such a facility can be constructed by placing a piston{spring system at the end of a pulsed detonation engine (PDE). Once the detonation wave re ects o the piston, oscillations of the system drive the linear generator. An experimental facility was developed to explore the interaction of a gaseous detonation wave with the piston. Experimental results were then used to develop a model for the interaction. Governing equations for two engine designs are developed and trends are established to indicate a feasible design space for future development.

New Detonation Concepts for Propulsion and Power Generation

New Detonation Concepts for Propulsion and Power Generation PDF Author: Eric M. Braun
Publisher:
ISBN:
Category : Combustion engineering
Languages : en
Pages :

Get Book Here

Book Description
A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal e ciency prediction of a detonation wave based on the work and heat speci ed by process path diagrams and a control volume analysis. A combined rst and second law analysis aids in understanding performance trends for di erent initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the ow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an ori ce connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed uidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected, the ori ce diameter, and the plenum cavity pressure. Results indicate that the detonation wave pressure temporarily interrupts the uidic valve supply, but the wave products can be quickly expelled by the fresh fuel supply to allow for refueling. The interruption time of the valve scales with injection and detonation wave pressure ratios as well as a characteristic time. The feasibility of using a detonation wave as a source for producing power in conjunction with a linear generator is considered. Such a facility can be constructed by placing a piston{spring system at the end of a pulsed detonation engine (PDE). Once the detonation wave re ects o the piston, oscillations of the system drive the linear generator. An experimental facility was developed to explore the interaction of a gaseous detonation wave with the piston. Experimental results were then used to develop a model for the interaction. Governing equations for two engine designs are developed and trends are established to indicate a feasible design space for future development.

Detonation Control for Propulsion

Detonation Control for Propulsion PDF Author: Jiun-Ming Li
Publisher: Springer
ISBN: 3319689061
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.

Characteristics of Rotating Detonation Engines for Propulsion and Power Generation

Characteristics of Rotating Detonation Engines for Propulsion and Power Generation PDF Author: Robert Francis Burke
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Conventional engines are limited by the efficiency of their combustion mode. Compared to present constant pressure deflagration-based engines, detonation-based systems can realize a higher thermodynamic cycle efficiency, making them an attractive candidate for next generation propulsion systems that will take humanity to hypersonic speeds and even to Mars. For all its performance gains, detonation engines are still far off from implementation. One system, the rotating detonation engine (RDE) is promising as a detonation-based engine concept for its stability, simplicity, and versatility. For these reasons, RDEs have been the subject of studies internationally in efforts to understand their operation and integration into conventional technology. RDEs are on the cusp of field use, considered at technology readiness level 5 with prototype demonstrations occurring today; however, there are still significant barriers holding back this technology from widespread adoption. The work of this dissertation confronts each of these barriers with experimental methods. Using multiple different RDE test facilities, investigations into injection, fueling, exhaust, detonability, and integration were conducted, targeting research gaps in each barrier. As a result, many novel advancements have been made from these studies such as the first demonstration of hydrogen and oxygen rotating detonations, the detonability of sustainable solid particle fuels, and the effect of fuel stratification on rotating detonation propagation. Altogether, the work presented depicts the RDE from a complete perspective by advancing current RDE research through multiple channels with the intention of advancing the technology readiness level of RDEs.

High-Speed Flight Propulsion Systems

High-Speed Flight Propulsion Systems PDF Author: S. N. B. Murthy
Publisher: AIAA
ISBN: 9781600863912
Category : Aerodynamics, Hypersonic
Languages : en
Pages : 558

Get Book Here

Book Description
Annotation Leading researchers provide a cohesive treatment of the complex issues in high-speed propulsion, as well as introductions to the current capabilities for addressing several fundamental aspects of high-speed vehicle propulsion development. Includes more than 380 references, 290 figures and tables, and 185 equations.

Detonation Physics-Based Modelling & Design of a Rotating Detonation Engine

Detonation Physics-Based Modelling & Design of a Rotating Detonation Engine PDF Author: Sean Francis Connolly-Boutin
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
A rotating detonation engine (RDE) is a new, more thermodynamically efficient, propulsion concept that replaces the traditional constant pressure combustion mechanism found in all currently used rockets and power generation devices. The constant pressure combustion is replaced by a detonation wave: a coupled shock-flame complex propagating at speeds of up to 2-3 km/s and generating combustion products at pressures 5-10 times the initial reactant pressure. This pressure gain through the combustion process leads to more compact, simpler devices that no longer require (or depend less upon) initial reactant precompression. Detonation-based cycles also have the added advantage of being theoretically more thermodynamically efficient than their constant pressure combustion counterparts. As such, RDEs have become increasingly popular in the propulsion research community, although there is still a lack of understanding in the underlying physics which govern their operability, though the existence of a minimum mass flow rate limit for stable operation has been observed. To help engineers and researchers design an RDE, a model was developed which combines geometric properties, 1D isentropic flow, and detonation physics to predict the stable operating bounds of an RDE. An engine testing facility was also constructed in collaboration with McGill University to test RDEs and confirm the performance of the prediction model developed.

Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power PDF Author: R. J. Litchford
Publisher:
ISBN:
Category :
Languages : en
Pages : 60

Get Book Here

Book Description


A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs

A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309102472
Category : Technology & Engineering
Languages : en
Pages : 288

Get Book Here

Book Description
Rocket and air-breathing propulsion systems are the foundation on which planning for future aerospace systems rests. A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs assesses the existing technical base in these areas and examines the future Air Force capabilities the base will be expected to support. This report also defines gaps and recommends where future warfighter capabilities not yet fully defined could be met by current science and technology development plans.

Future Propulsion Systems and Energy Sources in Sustainable Aviation

Future Propulsion Systems and Energy Sources in Sustainable Aviation PDF Author: Saeed Farokhi
Publisher: John Wiley & Sons
ISBN: 1119414997
Category : Technology & Engineering
Languages : en
Pages : 444

Get Book Here

Book Description
A comprehensive review of the science and engineering behind future propulsion systems and energy sources in sustainable aviation Future Propulsion Systems and Energy Sources in Sustainable Aviation is a comprehensive reference that offers a review of the science and engineering principles that underpin the concepts of propulsion systems and energy sources in sustainable air transportation. The author, a noted expert in the field, examines the impact of air transportation on the environment and reviews alternative jet fuels, hybrid-electric and nuclear propulsion and power. He also explores modern propulsion for transonic and supersonic-hypersonic aircraft and the impact of propulsion on aircraft design. Climate change is the main driver for the new technology development in sustainable air transportation. The book contains critical review of gas turbine propulsion and aircraft aerodynamics; followed by an insightful presentation of the aviation impact on environment. Future fuels and energy sources are introduced in a separate chapter. Promising technologies in propulsion and energy sources are identified leading to pathways to sustainable aviation. To facilitate the utility of the subject, the book is accompanied by a website that contains illustrations, and equation files. This important book: Contains a comprehensive reference to the science and engineering behind propulsion and power in sustainable air transportation Examines the impact of air transportation on the environment Covers alternative jet fuels and hybrid-electric propulsion and power Discusses modern propulsion for transonic, supersonic and hypersonic aircraft Examines the impact of propulsion system integration on aircraft design Written for engineers, graduate and senior undergraduate students in mechanical and aerospace engineering, Future Propulsion Systems and Energy Sources in Sustainable Aviation explores the future of aviation with a guide to sustainable air transportation that includes alternative jet fuels, hybrid-electric propulsion, all-electric and nuclear propulsion.

Advances in Experimentation & Computation of Detonations

Advances in Experimentation & Computation of Detonations PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Compilation of abstracts from the conference entitled International Colloquium: Advances in Experimentation & Computation of Detonations. Demands on engines used for propulsion and stationary power are increasing, since current applications involve extreme operating conditions and wide variations in load. While performance is the key focus on propulsion engines, fuel cost and hence lower specific fuel consumption is the driving factor for stationary engines. Though piston engines are extensively used, gas turbines have taken the lead as primary engines for air, sea and land power plant operations. It is time to focus our attention on alternate engine concepts. Considering the rapid energy release, flexibility, easy scalability, and low fuel consumption, engines based on pulsed detonation waves offer a significant potential. Further multi tube detonation engine with controlled sequential detonations might provide thrust vectoring without external mechanisms. Though detonation phenomena and its various aspects have been studied extensively over the past several decades, and have been utilized in devices, application of detonation to propulsion or stationary power engines is not yet realized. There has been a global resurgence on applied detonation research focussing on propulsion engines. However funds for research and development have been frugal globally, and have been decreasing. So it is timely and appropriate to review the accomplishments in detonation research, disseminate the current state of the art, and to plan for future cooperative efforts that can bring back substantial return for research investment. With this in mind, we have organized the International Colloquium on Advances in Experimentation & Computation of Detonations.

Jet, Rocket, Nuclear, Ion and Electric Propulsion

Jet, Rocket, Nuclear, Ion and Electric Propulsion PDF Author: W.H.T. Loh
Publisher: Springer Science & Business Media
ISBN: 3642461093
Category : Technology & Engineering
Languages : en
Pages : 770

Get Book Here

Book Description
During the last decade, rapid growth of knowledge in the field of jet, rocket, nuclear, ion and electric propulsion has resulted in many advances useful to the student, engineer and scientist. The purpose for offering this course is to make available to them these recent advances in theory and design. Accordingly, this course is organized into seven parts: Part 1 Introduction; Part 2 Jet Propulsion; Part 3 Rocket Propulsion; Part 4 Nuclear Propulsion; Part 5 Electric and Ion Propulsion; Part 6 Theory on Combustion, Detonation and Fluid Injection; Part 7 Advanced Concepts and Mission Applications. It is written in such a way that it may easily be adopted by other universities as a textbook for a one semester senior or graduate course on the subject. In addition to the undersigned who served as the course instructor and wrote Chapter I, 2 and 3, guest lecturers included: DR. G. L. DUGGER who wrote Chapter 4 "Ram-jets and Air-Aug mented Rockets," DR. GEORGE P. SUTTON who wrote Chapter 5 "Rockets and Cooling Methods," DR . . MARTIN SUMMERFIELD who wrote Chapter 6 "Solid Propellant Rockets," DR. HOWARD S. SEIFERT who wrote Chapter 7 "Hybrid Rockets," DR. CHANDLER C. Ross who wrote Chapter 8 "Advanced Nuclear Rocket Design," MR. GEORGE H. McLAFFERTY who wrote Chapter 9 "Gaseous Nuclear Rockets," DR. S. G. FORBES who wrote Chapter 10 "Electric and Ion Propul sion," DR. R. H. BODEN who wrote Chapter 11 "Ion Propulsion," DR.