New Computation Methods for Geometrical Optics

New Computation Methods for Geometrical Optics PDF Author: Psang Dain Lin
Publisher: Springer
ISBN: 9814451797
Category : Science
Languages : en
Pages : 247

Get Book Here

Book Description
This book employs homogeneous coordinate notation to compute the first- and second-order derivative matrices of various optical quantities. It will be one of the important mathematical tools for automatic optical design. The traditional geometrical optics is based on raytracing only. It is very difficult, if possible, to compute the first- and second-order derivatives of a ray and optical path length with respect to system variables, since they are recursive functions. Consequently, current commercial software packages use a finite difference approximation methodology to estimate these derivatives for use in optical design and analysis. Furthermore, previous publications of geometrical optics use vector notation, which is comparatively awkward for computations for non-axially symmetrical systems.

New Computation Methods for Geometrical Optics

New Computation Methods for Geometrical Optics PDF Author: Psang Dain Lin
Publisher: Springer
ISBN: 9814451797
Category : Science
Languages : en
Pages : 247

Get Book Here

Book Description
This book employs homogeneous coordinate notation to compute the first- and second-order derivative matrices of various optical quantities. It will be one of the important mathematical tools for automatic optical design. The traditional geometrical optics is based on raytracing only. It is very difficult, if possible, to compute the first- and second-order derivatives of a ray and optical path length with respect to system variables, since they are recursive functions. Consequently, current commercial software packages use a finite difference approximation methodology to estimate these derivatives for use in optical design and analysis. Furthermore, previous publications of geometrical optics use vector notation, which is comparatively awkward for computations for non-axially symmetrical systems.

New Computation Methods for Geometrical Optics

New Computation Methods for Geometrical Optics PDF Author: P.D. Lin
Publisher: Springer
ISBN: 9789814451802
Category : Science
Languages : en
Pages : 239

Get Book Here

Book Description
This book employs homogeneous coordinate notation to compute the first- and second-order derivative matrices of various optical quantities. It will be one of the important mathematical tools for automatic optical design. The traditional geometrical optics is based on raytracing only. It is very difficult, if possible, to compute the first- and second-order derivatives of a ray and optical path length with respect to system variables, since they are recursive functions. Consequently, current commercial software packages use a finite difference approximation methodology to estimate these derivatives for use in optical design and analysis. Furthermore, previous publications of geometrical optics use vector notation, which is comparatively awkward for computations for non-axially symmetrical systems.

Optics

Optics PDF Author: Karl Dieter Moeller
Publisher: Springer Science & Business Media
ISBN: 0387694927
Category : Science
Languages : en
Pages : 459

Get Book Here

Book Description
This new edition is intended for a one semester course in optics for juniors and seniors in science and engineering. It uses scripts from Maple, MathCad, Mathematica, and MATLAB to provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption. The text covers all the standard topics of a traditional optics course. It contains step by step derivations of all basic formulas in geometrical, wave and Fourier optics. The threefold arrangement of text, applications, and files makes the book suitable for "self-learning" by scientists or engineers who would like to refresh their knowledge of optics.

New Methods in Geometrical Optics

New Methods in Geometrical Optics PDF Author: Charles Sheldon Hastings
Publisher:
ISBN:
Category : Geometrical optics
Languages : en
Pages : 124

Get Book Here

Book Description


Mathematical Optics

Mathematical Optics PDF Author: Vasudevan Lakshminarayanan
Publisher: CRC Press
ISBN: 143986960X
Category : Science
Languages : en
Pages : 632

Get Book Here

Book Description
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.

Advanced Geometrical Optics

Advanced Geometrical Optics PDF Author: Psang Dain Lin
Publisher: Springer
ISBN: 9811022992
Category : Science
Languages : en
Pages : 470

Get Book Here

Book Description
This book computes the first- and second-order derivative matrices of skew ray and optical path length, while also providing an important mathematical tool for automatic optical design. This book consists of three parts. Part One reviews the basic theories of skew-ray tracing, paraxial optics and primary aberrations – essential reading that lays the foundation for the modeling work presented in the rest of this book. Part Two derives the Jacobian matrices of a ray and its optical path length. Although this issue is also addressed in other publications, they generally fail to consider all of the variables of a non-axially symmetrical system. The modeling work thus provides a more robust framework for the analysis and design of non-axially symmetrical systems such as prisms and head-up displays. Lastly, Part Three proposes a computational scheme for deriving the Hessian matrices of a ray and its optical path length, offering an effective means of determining an appropriate search direction when tuning the system variables in the system design process.

Geometric Optics

Geometric Optics PDF Author: Antonio Romano
Publisher: Birkhäuser
ISBN: 3319437321
Category : Mathematics
Languages : en
Pages : 289

Get Book Here

Book Description
This book—unique in the literature—provides readers with the mathematical background needed to design many of the optical combinations that are used in astronomical telescopes and cameras. The results presented in the work were obtained by using a different approach to third-order aberration theory as well as the extensive use of the software package Mathematica®. Replete with workout examples and exercises, Geometric Optics is an excellent reference for advanced graduate students, researchers, and practitioners in applied mathematics, engineering, astronomy, and astronomical optics. The work may be used as a supplementary textbook for graduate-level courses in astronomical optics, optical design, optical engineering, programming with Mathematica, or geometric optics.

The Principles and Methods of Geometrical Optics

The Principles and Methods of Geometrical Optics PDF Author: James Powell Cocke Southall
Publisher:
ISBN:
Category : Geometrical optics
Languages : en
Pages : 678

Get Book Here

Book Description


Sophisticated Electromagnetic Forward Scattering Solver via Deep Learning

Sophisticated Electromagnetic Forward Scattering Solver via Deep Learning PDF Author: Qiang Ren
Publisher: Springer Nature
ISBN: 9811662614
Category : Technology & Engineering
Languages : en
Pages : 137

Get Book Here

Book Description
This book investigates in detail the deep learning (DL) techniques in electromagnetic (EM) near-field scattering problems, assessing its potential to replace traditional numerical solvers in real-time forecast scenarios. Studies on EM scattering problems have attracted researchers in various fields, such as antenna design, geophysical exploration and remote sensing. Pursuing a holistic perspective, the book introduces the whole workflow in utilizing the DL framework to solve the scattering problems. To achieve precise approximation, medium-scale data sets are sufficient in training the proposed model. As a result, the fully trained framework can realize three orders of magnitude faster than the conventional FDFD solver. It is worth noting that the 2D and 3D scatterers in the scheme can be either lossless medium or metal, allowing the model to be more applicable. This book is intended for graduate students who are interested in deep learning with computational electromagnetics, professional practitioners working on EM scattering, or other corresponding researchers.

Mathematical Optics

Mathematical Optics PDF Author: Vasudevan Lakshminarayanan
Publisher: CRC Press
ISBN: 1439869618
Category : Science
Languages : en
Pages : 630

Get Book Here

Book Description
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.