Author: William Cherry
Publisher: Springer Science & Business Media
ISBN: 9783540664161
Category : Mathematics
Languages : en
Pages : 224
Book Description
This monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution as well as a valuable reference for research specialists. Authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its number theoretic digressions These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.
Nevanlinna’s Theory of Value Distribution
Author: William Cherry
Publisher: Springer Science & Business Media
ISBN: 9783540664161
Category : Mathematics
Languages : en
Pages : 224
Book Description
This monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution as well as a valuable reference for research specialists. Authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its number theoretic digressions These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.
Publisher: Springer Science & Business Media
ISBN: 9783540664161
Category : Mathematics
Languages : en
Pages : 224
Book Description
This monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution as well as a valuable reference for research specialists. Authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its number theoretic digressions These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.
Value Distribution of Meromorphic Functions
Author: Jianhua Zheng
Publisher: Springer Science & Business Media
ISBN: 3642129099
Category : Mathematics
Languages : en
Pages : 315
Book Description
"Value Distribution of Meromorphic Functions" focuses on functions meromorphic in an angle or on the complex plane, T directions, deficient values, singular values, potential theory in value distribution and the proof of the celebrated Nevanlinna conjecture. The book introduces various characteristics of meromorphic functions and their connections, several aspects of new singular directions, new results on estimates of the number of deficient values, new results on singular values and behaviours of subharmonic functions which are the foundation for further discussion on the proof of the Nevanlinna conjecture. The independent significance of normality of subharmonic function family is emphasized. This book is designed for scientists, engineers and post graduated students engaged in Complex Analysis and Meromorphic Functions. Dr. Jianhua Zheng is a Professor at the Department of Mathematical Sciences, Tsinghua University, China.
Publisher: Springer Science & Business Media
ISBN: 3642129099
Category : Mathematics
Languages : en
Pages : 315
Book Description
"Value Distribution of Meromorphic Functions" focuses on functions meromorphic in an angle or on the complex plane, T directions, deficient values, singular values, potential theory in value distribution and the proof of the celebrated Nevanlinna conjecture. The book introduces various characteristics of meromorphic functions and their connections, several aspects of new singular directions, new results on estimates of the number of deficient values, new results on singular values and behaviours of subharmonic functions which are the foundation for further discussion on the proof of the Nevanlinna conjecture. The independent significance of normality of subharmonic function family is emphasized. This book is designed for scientists, engineers and post graduated students engaged in Complex Analysis and Meromorphic Functions. Dr. Jianhua Zheng is a Professor at the Department of Mathematical Sciences, Tsinghua University, China.
Value Distribution Theory
Author: Yang Lo
Publisher: Springer
ISBN: 9783662029176
Category : Mathematics
Languages : en
Pages : 0
Book Description
It is well known that solving certain theoretical or practical problems often depends on exploring the behavior of the roots of an equation such as (1) J(z) = a, where J(z) is an entire or meromorphic function and a is a complex value. It is especially important to investigate the number n(r, J = a) of the roots of (1) and their distribution in a disk Izl ~ r, each root being counted with its multiplicity. It was the research on such topics that raised the curtain on the theory of value distribution of entire or meromorphic functions. In the last century, the famous mathematician E. Picard obtained the pathbreaking result: Any non-constant entire function J(z) must take every finite complex value infinitely many times, with at most one excep tion. Later, E. Borel, by introducing the concept of the order of an entire function, gave the above result a more precise formulation as follows. An entire function J (z) of order A( 0 A
Publisher: Springer
ISBN: 9783662029176
Category : Mathematics
Languages : en
Pages : 0
Book Description
It is well known that solving certain theoretical or practical problems often depends on exploring the behavior of the roots of an equation such as (1) J(z) = a, where J(z) is an entire or meromorphic function and a is a complex value. It is especially important to investigate the number n(r, J = a) of the roots of (1) and their distribution in a disk Izl ~ r, each root being counted with its multiplicity. It was the research on such topics that raised the curtain on the theory of value distribution of entire or meromorphic functions. In the last century, the famous mathematician E. Picard obtained the pathbreaking result: Any non-constant entire function J(z) must take every finite complex value infinitely many times, with at most one excep tion. Later, E. Borel, by introducing the concept of the order of an entire function, gave the above result a more precise formulation as follows. An entire function J (z) of order A( 0 A
Diophantine Approximations and Value Distribution Theory
Author: Paul Alan Vojta
Publisher: Springer
ISBN: 3540474528
Category : Mathematics
Languages : en
Pages : 141
Book Description
Publisher: Springer
ISBN: 3540474528
Category : Mathematics
Languages : en
Pages : 141
Book Description
Nevanlinna Theory in Several Complex Variables and Diophantine Approximation
Author: Junjiro Noguchi
Publisher: Springer Science & Business Media
ISBN: 4431545719
Category : Mathematics
Languages : en
Pages : 425
Book Description
The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7.
Publisher: Springer Science & Business Media
ISBN: 4431545719
Category : Mathematics
Languages : en
Pages : 425
Book Description
The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7.
Value-Distribution of L-Functions
Author: Jörn Steuding
Publisher: Springer
ISBN: 3540448225
Category : Mathematics
Languages : en
Pages : 320
Book Description
These notes present recent results in the value-distribution theory of L-functions with emphasis on the phenomenon of universality. Universality has a strong impact on the zero-distribution: Riemann’s hypothesis is true only if the Riemann zeta-function can approximate itself uniformly. The text proves universality for polynomial Euler products. The authors’ approach follows mainly Bagchi's probabilistic method. Discussion touches on related topics: almost periodicity, density estimates, Nevanlinna theory, and functional independence.
Publisher: Springer
ISBN: 3540448225
Category : Mathematics
Languages : en
Pages : 320
Book Description
These notes present recent results in the value-distribution theory of L-functions with emphasis on the phenomenon of universality. Universality has a strong impact on the zero-distribution: Riemann’s hypothesis is true only if the Riemann zeta-function can approximate itself uniformly. The text proves universality for polynomial Euler products. The authors’ approach follows mainly Bagchi's probabilistic method. Discussion touches on related topics: almost periodicity, density estimates, Nevanlinna theory, and functional independence.
Entire and Meromorphic Functions
Author: Lee A. Rubel
Publisher: Springer Science & Business Media
ISBN: 1461207355
Category : Mathematics
Languages : en
Pages : 196
Book Description
Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
Publisher: Springer Science & Business Media
ISBN: 1461207355
Category : Mathematics
Languages : en
Pages : 196
Book Description
Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
Meromorphic Functions over non-Archimedean Fields
Author: Pei-Chu Hu
Publisher: Springer Science & Business Media
ISBN: 9780792365327
Category : Mathematics
Languages : en
Pages : 308
Book Description
This book introduces value distribution theory over non-Archimedean fields, starting with a survey of two Nevanlinna-type main theorems and defect relations for meromorphic functions and holomorphic curves. Secondly, it gives applications of the above theory to, e.g., abc-conjecture, Waring's problem, uniqueness theorems for meromorphic functions, and Malmquist-type theorems for differential equations over non-Archimedean fields. Next, iteration theory of rational and entire functions over non-Archimedean fields and Schmidt's subspace theorems are studied. Finally, the book suggests some new problems for further research. Audience: This work will be of interest to graduate students working in complex or diophantine approximation as well as to researchers involved in the fields of analysis, complex function theory of one or several variables, and analytic spaces.
Publisher: Springer Science & Business Media
ISBN: 9780792365327
Category : Mathematics
Languages : en
Pages : 308
Book Description
This book introduces value distribution theory over non-Archimedean fields, starting with a survey of two Nevanlinna-type main theorems and defect relations for meromorphic functions and holomorphic curves. Secondly, it gives applications of the above theory to, e.g., abc-conjecture, Waring's problem, uniqueness theorems for meromorphic functions, and Malmquist-type theorems for differential equations over non-Archimedean fields. Next, iteration theory of rational and entire functions over non-Archimedean fields and Schmidt's subspace theorems are studied. Finally, the book suggests some new problems for further research. Audience: This work will be of interest to graduate students working in complex or diophantine approximation as well as to researchers involved in the fields of analysis, complex function theory of one or several variables, and analytic spaces.
Nevanlinna Theory, Normal Families, and Algebraic Differential Equations
Author: Norbert Steinmetz
Publisher: Springer
ISBN: 3319598007
Category : Mathematics
Languages : en
Pages : 249
Book Description
This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers working on related problems, Nevanlinna Theory, Normal Families, and Algebraic Differential Equations will also be of interest to complex analysts looking for an introduction to various topics in the subject area. With examples, exercises and proofs seamlessly intertwined with the body of the text, this book is particularly suitable for the more advanced reader.
Publisher: Springer
ISBN: 3319598007
Category : Mathematics
Languages : en
Pages : 249
Book Description
This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers working on related problems, Nevanlinna Theory, Normal Families, and Algebraic Differential Equations will also be of interest to complex analysts looking for an introduction to various topics in the subject area. With examples, exercises and proofs seamlessly intertwined with the body of the text, this book is particularly suitable for the more advanced reader.
Analysis And Mathematical Physics
Author: Shaun Bullett
Publisher: World Scientific
ISBN: 1786341018
Category : Science
Languages : en
Pages : 246
Book Description
This is a concise reference book on analysis and mathematical physics, leading readers from a foundation to advanced level understanding of the topic. This is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as distributions, Fourier transforms and microlocal analysis, C* Algebras, value distribution of meromorphic functions, noncommutative differential geometry, differential geometry and mathematical physics, mathematical problems of general relativity, and special functions of mathematical physics.Analysis and Mathematical Physics is the sixth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
Publisher: World Scientific
ISBN: 1786341018
Category : Science
Languages : en
Pages : 246
Book Description
This is a concise reference book on analysis and mathematical physics, leading readers from a foundation to advanced level understanding of the topic. This is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as distributions, Fourier transforms and microlocal analysis, C* Algebras, value distribution of meromorphic functions, noncommutative differential geometry, differential geometry and mathematical physics, mathematical problems of general relativity, and special functions of mathematical physics.Analysis and Mathematical Physics is the sixth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.