Author: James Devillers
Publisher: Academic Press
ISBN: 0080537383
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
Comprehensive and impeccably edited, Neural Networks in QSAR and Drug Design is the first book to present an all-inclusive coverage of the topic. The book provides a practice-oriented introduction to the different neural network paradigms, allowing the reader to easily understand and reproduce the results demonstrated. Numerous examples are detailed, demonstrating a variety of applications to QSAR and drug design.The contributors include some of the most distinguished names in the field, and the book provides an exhaustive bibliography, guiding readers to all the literature related to a particular type of application or neural network paradigm. The extensive index acts as a guide to the book, and makes retrieving information from chapters an easy task. A further research aid is a list of software with indications of availablility and price, as well as the editors scale rating the ease of use and interest/price ratio of each software package. The presentation of new, powerful tools for modeling molecular properties and the inclusion of many important neural network paradigms, coupled with extensive reference aids, makes Neural Networks in QSAR and Drug Design an essential reference source for those on the frontiers of this field. - Presents the first coverage of neural networks in QSAR and Drug Design - Allows easy understanding and reproduction of the results described within - Includes an exhaustive bibliography with more than 200 references - Provides a list of applicable software packages with availability and price
Neural Networks in QSAR and Drug Design
Author: James Devillers
Publisher: Academic Press
ISBN: 0080537383
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
Comprehensive and impeccably edited, Neural Networks in QSAR and Drug Design is the first book to present an all-inclusive coverage of the topic. The book provides a practice-oriented introduction to the different neural network paradigms, allowing the reader to easily understand and reproduce the results demonstrated. Numerous examples are detailed, demonstrating a variety of applications to QSAR and drug design.The contributors include some of the most distinguished names in the field, and the book provides an exhaustive bibliography, guiding readers to all the literature related to a particular type of application or neural network paradigm. The extensive index acts as a guide to the book, and makes retrieving information from chapters an easy task. A further research aid is a list of software with indications of availablility and price, as well as the editors scale rating the ease of use and interest/price ratio of each software package. The presentation of new, powerful tools for modeling molecular properties and the inclusion of many important neural network paradigms, coupled with extensive reference aids, makes Neural Networks in QSAR and Drug Design an essential reference source for those on the frontiers of this field. - Presents the first coverage of neural networks in QSAR and Drug Design - Allows easy understanding and reproduction of the results described within - Includes an exhaustive bibliography with more than 200 references - Provides a list of applicable software packages with availability and price
Publisher: Academic Press
ISBN: 0080537383
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
Comprehensive and impeccably edited, Neural Networks in QSAR and Drug Design is the first book to present an all-inclusive coverage of the topic. The book provides a practice-oriented introduction to the different neural network paradigms, allowing the reader to easily understand and reproduce the results demonstrated. Numerous examples are detailed, demonstrating a variety of applications to QSAR and drug design.The contributors include some of the most distinguished names in the field, and the book provides an exhaustive bibliography, guiding readers to all the literature related to a particular type of application or neural network paradigm. The extensive index acts as a guide to the book, and makes retrieving information from chapters an easy task. A further research aid is a list of software with indications of availablility and price, as well as the editors scale rating the ease of use and interest/price ratio of each software package. The presentation of new, powerful tools for modeling molecular properties and the inclusion of many important neural network paradigms, coupled with extensive reference aids, makes Neural Networks in QSAR and Drug Design an essential reference source for those on the frontiers of this field. - Presents the first coverage of neural networks in QSAR and Drug Design - Allows easy understanding and reproduction of the results described within - Includes an exhaustive bibliography with more than 200 references - Provides a list of applicable software packages with availability and price
Artificial Intelligence in Drug Discovery
Author: Nathan Brown
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425
Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425
Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
De novo Molecular Design
Author: Gisbert Schneider
Publisher: John Wiley & Sons
ISBN: 3527677038
Category : Medical
Languages : en
Pages : 540
Book Description
Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes and diagnostics, pesticides, and any other molecule designed to interact with a biological system. Numerous images and screenshots illustrate the many examples and method descriptions. With its broad and balanced coverage, this will be the firststop resource not only for medicinal chemists, biochemists and biotechnologists, but equally for bioinformaticians and molecular designers for many years to come. From the content: * Reaction-driven de novo design * Adaptive methods in molecular design * Design of ligands against multitarget profiles * Free energy methods in ligand design * Fragment-based de novo design * Automated design of focused and target family-oriented compound libraries * Molecular de novo design by nature-inspired computing * 3D QSAR approaches to de novo drug design * Bioisosteres in de novo design * De novo design of peptides, proteins and nucleic acid structures, including RNA aptamers and many more.
Publisher: John Wiley & Sons
ISBN: 3527677038
Category : Medical
Languages : en
Pages : 540
Book Description
Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes and diagnostics, pesticides, and any other molecule designed to interact with a biological system. Numerous images and screenshots illustrate the many examples and method descriptions. With its broad and balanced coverage, this will be the firststop resource not only for medicinal chemists, biochemists and biotechnologists, but equally for bioinformaticians and molecular designers for many years to come. From the content: * Reaction-driven de novo design * Adaptive methods in molecular design * Design of ligands against multitarget profiles * Free energy methods in ligand design * Fragment-based de novo design * Automated design of focused and target family-oriented compound libraries * Molecular de novo design by nature-inspired computing * 3D QSAR approaches to de novo drug design * Bioisosteres in de novo design * De novo design of peptides, proteins and nucleic acid structures, including RNA aptamers and many more.
Handbook of Chemoinformatics
Author: Johann Gasteiger
Publisher:
ISBN: 9783527306800
Category : Cheminformatics
Languages : en
Pages : 1870
Book Description
"The new discipline of chemoinformatics covers the application of computer-assisted methods to chemical problems such as information storage and retrieval, the prediction of physical, chemical or biological properties of compounds, spectra simulation, structure elucidation, reaction modeling, synthesis planning and drug design. ... this four-volume Handbook contains in-depth contributions from top authors from around the world, with the content organized into chapters dealing with the representation of molecular structures and reactions, data types and databases/data sources, search methods, methods for data analysis as well as applications"--Back cover.
Publisher:
ISBN: 9783527306800
Category : Cheminformatics
Languages : en
Pages : 1870
Book Description
"The new discipline of chemoinformatics covers the application of computer-assisted methods to chemical problems such as information storage and retrieval, the prediction of physical, chemical or biological properties of compounds, spectra simulation, structure elucidation, reaction modeling, synthesis planning and drug design. ... this four-volume Handbook contains in-depth contributions from top authors from around the world, with the content organized into chapters dealing with the representation of molecular structures and reactions, data types and databases/data sources, search methods, methods for data analysis as well as applications"--Back cover.
Artificial Intelligence in Drug Design
Author: Alexander Heifetz
Publisher: Humana
ISBN: 9781071617892
Category : Medical
Languages : en
Pages : 0
Book Description
This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as: structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers.
Publisher: Humana
ISBN: 9781071617892
Category : Medical
Languages : en
Pages : 0
Book Description
This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as: structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers.
Machine Learning in Chemistry
Author: Jon Paul Janet
Publisher: American Chemical Society
ISBN: 0841299005
Category : Science
Languages : en
Pages : 189
Book Description
Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important
Publisher: American Chemical Society
ISBN: 0841299005
Category : Science
Languages : en
Pages : 189
Book Description
Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important
Learning Deep Architectures for AI
Author: Yoshua Bengio
Publisher: Now Publishers Inc
ISBN: 1601982941
Category : Computational learning theory
Languages : en
Pages : 145
Book Description
Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Publisher: Now Publishers Inc
ISBN: 1601982941
Category : Computational learning theory
Languages : en
Pages : 145
Book Description
Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Deep Learning for the Life Sciences
Author: Bharath Ramsundar
Publisher: O'Reilly Media
ISBN: 1492039802
Category : Science
Languages : en
Pages : 236
Book Description
Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working
Publisher: O'Reilly Media
ISBN: 1492039802
Category : Science
Languages : en
Pages : 236
Book Description
Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working
Artificial Intelligence in Chemistry
Author: José S. Torrecilla
Publisher: Frontiers Media SA
ISBN: 2889638707
Category :
Languages : en
Pages : 89
Book Description
Publisher: Frontiers Media SA
ISBN: 2889638707
Category :
Languages : en
Pages : 89
Book Description
Receptor - Based Drug Design
Author: Paul Leff
Publisher: CRC Press
ISBN: 9781420001136
Category : Medical
Languages : en
Pages : 816
Book Description
Employing a wide range of examples from G-protein-coupled receptors and ligand-gated ion channels, this detailed, single-source reference illustrates the principles of pharmacological analysis and receptor classification that are the basis of rational drug design. Explains the experimental and theoretical methods used to characterize interactions between ligands and receptors-providing the pharmacological information needed to solve treatment problems and facilitate the drug design process! Demonstrating the achievements of the receptor-based approach in therapeutics and indicating future directions, Receptor-Based Drug Design introduces novel computer-assisted strategies for the design of new agonists, antagonists, and inverse agonists for G-protein-coupled receptors shows how to assess agonist concentration-effect curve data discusses radioligand binding assays presents new in vitro multiarray assays for G-protein-coupled receptors explains the use of individual second messenger signaling responses in analyzing drug-receptor interactions examines the role of electrophysiology in finding new drugs and drug targets describes selectively acting b-adrenoceptor agonists and glucocorticoid steroids for asthma treatment outlines the rationale for using angiotensin receptor antagonists and more! Written by over 25 international authorities and containing nearly 1200 bibliographic citations, Receptor-Based Drug Design is a practical resource for pharmacologists, pharmacists, and pharmaceutical scientists; organic and medicinal chemists and biochemists; molecular biologists; biomedical researchers; and upper-level undergraduate and graduate students in these disciplines.
Publisher: CRC Press
ISBN: 9781420001136
Category : Medical
Languages : en
Pages : 816
Book Description
Employing a wide range of examples from G-protein-coupled receptors and ligand-gated ion channels, this detailed, single-source reference illustrates the principles of pharmacological analysis and receptor classification that are the basis of rational drug design. Explains the experimental and theoretical methods used to characterize interactions between ligands and receptors-providing the pharmacological information needed to solve treatment problems and facilitate the drug design process! Demonstrating the achievements of the receptor-based approach in therapeutics and indicating future directions, Receptor-Based Drug Design introduces novel computer-assisted strategies for the design of new agonists, antagonists, and inverse agonists for G-protein-coupled receptors shows how to assess agonist concentration-effect curve data discusses radioligand binding assays presents new in vitro multiarray assays for G-protein-coupled receptors explains the use of individual second messenger signaling responses in analyzing drug-receptor interactions examines the role of electrophysiology in finding new drugs and drug targets describes selectively acting b-adrenoceptor agonists and glucocorticoid steroids for asthma treatment outlines the rationale for using angiotensin receptor antagonists and more! Written by over 25 international authorities and containing nearly 1200 bibliographic citations, Receptor-Based Drug Design is a practical resource for pharmacologists, pharmacists, and pharmaceutical scientists; organic and medicinal chemists and biochemists; molecular biologists; biomedical researchers; and upper-level undergraduate and graduate students in these disciplines.