Author: Jean-Pierre Aubin
Publisher: Cambridge University Press
ISBN: 9780521445320
Category : Computers
Languages : en
Pages : 306
Book Description
This book is devoted to some mathematical methods that arise in two domains of artificial intelligence: neural networks and qualitative physics. Professor Aubin makes use of control and viability theory in neural networks and cognitive systems, regarded as dynamical systems controlled by synaptic matrices, and set-valued analysis that plays a natural and crucial role in qualitative analysis and simulation. This allows many examples of neural networks to be presented in a unified way. In addition, several results on the control of linear and nonlinear systems are used to obtain a "learning algorithm" of pattern classification problems, such as the back-propagation formula, as well as learning algorithms of feedback regulation laws of solutions to control systems subject to state constraints.
Neural Networks and Qualitative Physics
Author: Jean-Pierre Aubin
Publisher: Cambridge University Press
ISBN: 9780521445320
Category : Computers
Languages : en
Pages : 306
Book Description
This book is devoted to some mathematical methods that arise in two domains of artificial intelligence: neural networks and qualitative physics. Professor Aubin makes use of control and viability theory in neural networks and cognitive systems, regarded as dynamical systems controlled by synaptic matrices, and set-valued analysis that plays a natural and crucial role in qualitative analysis and simulation. This allows many examples of neural networks to be presented in a unified way. In addition, several results on the control of linear and nonlinear systems are used to obtain a "learning algorithm" of pattern classification problems, such as the back-propagation formula, as well as learning algorithms of feedback regulation laws of solutions to control systems subject to state constraints.
Publisher: Cambridge University Press
ISBN: 9780521445320
Category : Computers
Languages : en
Pages : 306
Book Description
This book is devoted to some mathematical methods that arise in two domains of artificial intelligence: neural networks and qualitative physics. Professor Aubin makes use of control and viability theory in neural networks and cognitive systems, regarded as dynamical systems controlled by synaptic matrices, and set-valued analysis that plays a natural and crucial role in qualitative analysis and simulation. This allows many examples of neural networks to be presented in a unified way. In addition, several results on the control of linear and nonlinear systems are used to obtain a "learning algorithm" of pattern classification problems, such as the back-propagation formula, as well as learning algorithms of feedback regulation laws of solutions to control systems subject to state constraints.
Machine Learning with Neural Networks
Author: Bernhard Mehlig
Publisher: Cambridge University Press
ISBN: 1108849563
Category : Science
Languages : en
Pages : 262
Book Description
This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.
Publisher: Cambridge University Press
ISBN: 1108849563
Category : Science
Languages : en
Pages : 262
Book Description
This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.
Statistical Mechanics of Neural Networks
Author: Haiping Huang
Publisher: Springer Nature
ISBN: 9811675708
Category : Science
Languages : en
Pages : 302
Book Description
This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
Publisher: Springer Nature
ISBN: 9811675708
Category : Science
Languages : en
Pages : 302
Book Description
This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
Neural Networks
Author: Herve Abdi
Publisher: SAGE
ISBN: 9780761914402
Category : Computers
Languages : en
Pages : 104
Book Description
"Neural Networks have influenced many areas of research but have only just started to be utilized in social science research. Neural Networks provides the first accessible introduction to this analysis as a powerful method for social scientists. It provides numerous studies and examples that illustrate the advantages of neural network analysis over other quantitative and modeling methods in wide spread use among social scientists. The author presents the methods in an accessible style for the reader who does not have a background in computer science. Features include an introduction to the vocabulary and framework of neural networks, a concise history of neural network methods, a substantial review of the literature, detailed neural network applications in the social sciences, coverage of the most common alternative neural network models, methodological considerations in applying neural networks, examples using the two leading software packages for neural network analysis, and numerous illustrations and diagrams."--Pub. desc.
Publisher: SAGE
ISBN: 9780761914402
Category : Computers
Languages : en
Pages : 104
Book Description
"Neural Networks have influenced many areas of research but have only just started to be utilized in social science research. Neural Networks provides the first accessible introduction to this analysis as a powerful method for social scientists. It provides numerous studies and examples that illustrate the advantages of neural network analysis over other quantitative and modeling methods in wide spread use among social scientists. The author presents the methods in an accessible style for the reader who does not have a background in computer science. Features include an introduction to the vocabulary and framework of neural networks, a concise history of neural network methods, a substantial review of the literature, detailed neural network applications in the social sciences, coverage of the most common alternative neural network models, methodological considerations in applying neural networks, examples using the two leading software packages for neural network analysis, and numerous illustrations and diagrams."--Pub. desc.
Statistical Field Theory for Neural Networks
Author: Moritz Helias
Publisher: Springer Nature
ISBN: 303046444X
Category : Science
Languages : en
Pages : 213
Book Description
This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.
Publisher: Springer Nature
ISBN: 303046444X
Category : Science
Languages : en
Pages : 213
Book Description
This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.
Deep Learning and Physics
Author: Akinori Tanaka
Publisher: Springer Nature
ISBN: 9813361085
Category : Science
Languages : en
Pages : 207
Book Description
What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.
Publisher: Springer Nature
ISBN: 9813361085
Category : Science
Languages : en
Pages : 207
Book Description
What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.
IECON.
Author:
Publisher:
ISBN:
Category : Industrial electronics
Languages : en
Pages : 852
Book Description
Publisher:
ISBN:
Category : Industrial electronics
Languages : en
Pages : 852
Book Description
Model-based Process Supervision
Author: Arun Kumar Samantaray
Publisher: Springer Science & Business Media
ISBN: 1848001592
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
This book provides control engineers and workers in industrial and academic research establishments interested in process engineering with a means to build up a practical and functional supervisory control environment and to use sophisticated models to get the best use out of their process data. Several applications to academic and small-scale-industrial processes are discussed and the development of a supervision platform for an industrial plant is presented.
Publisher: Springer Science & Business Media
ISBN: 1848001592
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
This book provides control engineers and workers in industrial and academic research establishments interested in process engineering with a means to build up a practical and functional supervisory control environment and to use sophisticated models to get the best use out of their process data. Several applications to academic and small-scale-industrial processes are discussed and the development of a supervision platform for an industrial plant is presented.
Principles of Noology
Author: Seng-Beng Ho
Publisher: Springer
ISBN: 3319321137
Category : Medical
Languages : en
Pages : 444
Book Description
The idea of this book is to establish a new scientific discipline, “noology,” under which a set of fundamental principles are proposed for the characterization of both naturally occurring and artificial intelligent systems. The methodology adopted in Principles of Noology for the characterization of intelligent systems, or “noological systems,” is a computational one, much like that of AI. Many AI devices such as predicate logic representations, search mechanisms, heuristics, and computational learning mechanisms are employed but they are recast in a totally new framework for the characterization of noological systems. The computational approach in this book provides a quantitative and high resolution understanding of noological processes, and at the same time the principles and methodologies formulated are directly implementable in AI systems. In contrast to traditional AI that ignores motivational and affective processes, under the paradigm of noology, motivational and affective processes are central to the functioning of noological systems and their roles in noological processes are elucidated in detailed computational terms. In addition, a number of novel representational and learning mechanisms are proposed, and ample examples and computer simulations are provided to show their applications. These include rapid effective causal learning (a novel learning mechanism that allows an AI/noological system to learn causality with a small number of training instances), learning of scripts that enables knowledge chunking and rapid problem solving, and learning of heuristics that further accelerates problem solving. Semantic grounding allows an AI/noological system to “truly understand” the meaning of the knowledge it encodes. This issue is extensively explored. This is a highly informative book providing novel and deep insights into intelligent systems which is particularly relevant to both researchers and students of AI and the cognitive sciences.
Publisher: Springer
ISBN: 3319321137
Category : Medical
Languages : en
Pages : 444
Book Description
The idea of this book is to establish a new scientific discipline, “noology,” under which a set of fundamental principles are proposed for the characterization of both naturally occurring and artificial intelligent systems. The methodology adopted in Principles of Noology for the characterization of intelligent systems, or “noological systems,” is a computational one, much like that of AI. Many AI devices such as predicate logic representations, search mechanisms, heuristics, and computational learning mechanisms are employed but they are recast in a totally new framework for the characterization of noological systems. The computational approach in this book provides a quantitative and high resolution understanding of noological processes, and at the same time the principles and methodologies formulated are directly implementable in AI systems. In contrast to traditional AI that ignores motivational and affective processes, under the paradigm of noology, motivational and affective processes are central to the functioning of noological systems and their roles in noological processes are elucidated in detailed computational terms. In addition, a number of novel representational and learning mechanisms are proposed, and ample examples and computer simulations are provided to show their applications. These include rapid effective causal learning (a novel learning mechanism that allows an AI/noological system to learn causality with a small number of training instances), learning of scripts that enables knowledge chunking and rapid problem solving, and learning of heuristics that further accelerates problem solving. Semantic grounding allows an AI/noological system to “truly understand” the meaning of the knowledge it encodes. This issue is extensively explored. This is a highly informative book providing novel and deep insights into intelligent systems which is particularly relevant to both researchers and students of AI and the cognitive sciences.
Advances in Quantitative Asset Management
Author: Christian Dunis
Publisher: Springer Science & Business Media
ISBN: 1461543894
Category : Business & Economics
Languages : en
Pages : 345
Book Description
Advances in Quantitative Asset Management contains selected articles which, for the most part, were presented at the `Forecasting Financial Markets' Conference. `Forecasting Financial Markets' is an international conference on quantitative finance which is held in London in May every year. Since its inception in 1994, the conference has grown in scope and stature to become a key international meeting point for those interested in quantitative finance, with the participation of prestigious academic and research institutions from all over the world, including major central banks and quantitative fund managers. The editor has chosen to concentrate on advances in quantitative asset management and, accordingly, the papers in this book are organized around two major themes: advances in asset allocation and portfolio management, and modelling risk, return and correlation.
Publisher: Springer Science & Business Media
ISBN: 1461543894
Category : Business & Economics
Languages : en
Pages : 345
Book Description
Advances in Quantitative Asset Management contains selected articles which, for the most part, were presented at the `Forecasting Financial Markets' Conference. `Forecasting Financial Markets' is an international conference on quantitative finance which is held in London in May every year. Since its inception in 1994, the conference has grown in scope and stature to become a key international meeting point for those interested in quantitative finance, with the participation of prestigious academic and research institutions from all over the world, including major central banks and quantitative fund managers. The editor has chosen to concentrate on advances in quantitative asset management and, accordingly, the papers in this book are organized around two major themes: advances in asset allocation and portfolio management, and modelling risk, return and correlation.