Author: Suleyman Senyurt
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 7
Book Description
It is well known that many studies related to the differential geometry of curves have been made. Especially, by establishing relations between the Frenet Frames in mutual points of two curves several theories have been obtained.
N∗C∗− Smarandache Curve of Bertrand Curves Pair According to Frenet Frame
Author: Suleyman Senyurt
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 7
Book Description
It is well known that many studies related to the differential geometry of curves have been made. Especially, by establishing relations between the Frenet Frames in mutual points of two curves several theories have been obtained.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 7
Book Description
It is well known that many studies related to the differential geometry of curves have been made. Especially, by establishing relations between the Frenet Frames in mutual points of two curves several theories have been obtained.
Smarandache Curves for Spherical Indicatrix of the Bertrand Curves Pair
Author: Suleyman Senyurt
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 13
Book Description
In this paper, we investigate special Smarandache curves with regard to Sabban frame for Bertrand partner curve spherical indicatrix. Some results have been obtained. These results were expressed depending on the Bertrand curve. Besides, we are given examples of our results.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 13
Book Description
In this paper, we investigate special Smarandache curves with regard to Sabban frame for Bertrand partner curve spherical indicatrix. Some results have been obtained. These results were expressed depending on the Bertrand curve. Besides, we are given examples of our results.
Smarandache Geometries & Map Theories with Applications (I) [English and Chinese]
Author: Linfan Mao
Publisher: Infinite Study
ISBN: 1599730197
Category : Mathematics
Languages : en
Pages : 215
Book Description
800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Smarandache Geometries as generalizations of Finsler, Riemannian, Weyl, and Kahler Geometries. A Smarandache geometry (SG) is a geometry which has at least one smarandachely denied axiom (1969). An axiom is said smarandachely denied (S-denied) if in the same space the axiom behaves differently (i.e., validated and invalided; or only invalidated but in at least two distinct ways). Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some SGs. These last geometries can be partially Euclidean and partially non-Euclidean. The novelty of the SG is the fact that they introduce for the first time the degree of negation in geometry, similarly to the degree of falsehood in fuzzy or neutrosophic logic. For example an axiom can be denied in percentage of 30 Also SG are defined on multispaces, i.e. unions of Euclidean and non-Euclidean subspaces, or unions of distinct non-Euclidean spaces. As an example of S-denying, a proposition , which is the conjunction of a set i of propositions, can be invalidated in many ways if it is minimally unsatisfiable, that is, such that the conjunction of any proper subset of the i is satisfied in a structure, but itself is not. Here it is an example of what it means for an axiom to be invalidated in multiple ways [2] : As a particular axiom let's take Euclid's Fifth Postulate. In Euclidean or parabolic geometry a line has one parallel only through a given point. In Lobacevskian or hyperbolic geometry a line has at least two parallels through a given point. In Riemannian or elliptic geometry a line has no parallel through a given point. Whereas in Smarandache geometries there are lines which have no parallels through a given point and other lines which have one or more parallels through a given point (the fifth postulate is invalidated in many ways). Therefore, the Euclid's Fifth Postulate (which asserts that there is only one parallel passing through an exterior point to a given line) can be invalidated in many ways, i.e. Smarandachely denied, as follows: - first invalidation: there is no parallel passing through an exterior point to a given line; - second invalidation: there is a finite number of parallels passing through an exterior point to a given line; - third invalidation: there are infinitely many parallels passing through an exterior point to a given line.
Publisher: Infinite Study
ISBN: 1599730197
Category : Mathematics
Languages : en
Pages : 215
Book Description
800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Smarandache Geometries as generalizations of Finsler, Riemannian, Weyl, and Kahler Geometries. A Smarandache geometry (SG) is a geometry which has at least one smarandachely denied axiom (1969). An axiom is said smarandachely denied (S-denied) if in the same space the axiom behaves differently (i.e., validated and invalided; or only invalidated but in at least two distinct ways). Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some SGs. These last geometries can be partially Euclidean and partially non-Euclidean. The novelty of the SG is the fact that they introduce for the first time the degree of negation in geometry, similarly to the degree of falsehood in fuzzy or neutrosophic logic. For example an axiom can be denied in percentage of 30 Also SG are defined on multispaces, i.e. unions of Euclidean and non-Euclidean subspaces, or unions of distinct non-Euclidean spaces. As an example of S-denying, a proposition , which is the conjunction of a set i of propositions, can be invalidated in many ways if it is minimally unsatisfiable, that is, such that the conjunction of any proper subset of the i is satisfied in a structure, but itself is not. Here it is an example of what it means for an axiom to be invalidated in multiple ways [2] : As a particular axiom let's take Euclid's Fifth Postulate. In Euclidean or parabolic geometry a line has one parallel only through a given point. In Lobacevskian or hyperbolic geometry a line has at least two parallels through a given point. In Riemannian or elliptic geometry a line has no parallel through a given point. Whereas in Smarandache geometries there are lines which have no parallels through a given point and other lines which have one or more parallels through a given point (the fifth postulate is invalidated in many ways). Therefore, the Euclid's Fifth Postulate (which asserts that there is only one parallel passing through an exterior point to a given line) can be invalidated in many ways, i.e. Smarandachely denied, as follows: - first invalidation: there is no parallel passing through an exterior point to a given line; - second invalidation: there is a finite number of parallels passing through an exterior point to a given line; - third invalidation: there are infinitely many parallels passing through an exterior point to a given line.
Noether's Theorems
Author: Gennadi Sardanashvily
Publisher: Springer
ISBN: 9462391718
Category : Mathematics
Languages : en
Pages : 304
Book Description
The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.
Publisher: Springer
ISBN: 9462391718
Category : Mathematics
Languages : en
Pages : 304
Book Description
The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.
Finsler Geometry and Applications
Author: Aurel Bejancu
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 208
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 208
Book Description
Combinatorial Geometry with Applications to Field Theory, Second Edition, graduate textbook in mathematics
Author: Linfan Mao
Publisher: Infinite Study
ISBN: 159973155X
Category : Combinatorial geometry
Languages : en
Pages : 502
Book Description
Publisher: Infinite Study
ISBN: 159973155X
Category : Combinatorial geometry
Languages : en
Pages : 502
Book Description
Structures On Manifolds
Author: Masahiro Kon
Publisher: World Scientific
ISBN: 9814602809
Category :
Languages : en
Pages : 520
Book Description
Contents: Riemannian ManifoldsSubmanifolds of Riemannian ManifoldsComplex ManifoldsSubmanifolds of Kaehlerian ManifoldsContact ManifoldsSubmanifolds of Sasakian Manifoldsf-StructuresProduct ManifoldsSubmersions Readership: Mathematicians. Keywords:Riemannian Manifold;Submanifold;Complex Manifold;Contact Manifold;Kaehlerian Manifold;Sasakian Manifold;Anti-Invariant Submanifold;CR Submanifold;Contact CR Submanifold;Submersion
Publisher: World Scientific
ISBN: 9814602809
Category :
Languages : en
Pages : 520
Book Description
Contents: Riemannian ManifoldsSubmanifolds of Riemannian ManifoldsComplex ManifoldsSubmanifolds of Kaehlerian ManifoldsContact ManifoldsSubmanifolds of Sasakian Manifoldsf-StructuresProduct ManifoldsSubmersions Readership: Mathematicians. Keywords:Riemannian Manifold;Submanifold;Complex Manifold;Contact Manifold;Kaehlerian Manifold;Sasakian Manifold;Anti-Invariant Submanifold;CR Submanifold;Contact CR Submanifold;Submersion
Quaternions, Clifford Algebras and Relativistic Physics
Author: Patrick R. Girard
Publisher: Springer Science & Business Media
ISBN: 3764377917
Category : Mathematics
Languages : en
Pages : 177
Book Description
The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.
Publisher: Springer Science & Business Media
ISBN: 3764377917
Category : Mathematics
Languages : en
Pages : 177
Book Description
The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.
Law of Included Multiple-Middle & Principle of Dynamic Neutrosophic Opposition
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 159973303X
Category : Neutrosophic logic
Languages : en
Pages : 136
Book Description
In this book the author pledges for the generalization of the Lupasco-Nicolescu’s Law of Included Middle [,, and a third value which resolves their contradiction at another level of reality] to the Law of Included Multiple-Middle [, , and , where is split into a multitude of neutralities between and , such as , , etc.]. The value (i.e. neutrality or indeterminacy related to ) actually comprises the included middle value. Further, similarly to the extension from dialectics to neutrosophy, the author extends the Principle of Dynamic Opposition [opposition between and ] to the Principle of Dynamic Neutrosophic Opposition [which means oppositions among , , and ]. Explanation: The following dialogues are a compilation of different dialogues I had – during the years – on neutrosophy and related topics with academic colleagues, mostly by email. As they were non-protocol dialogues, initially not intended for publication, I invented a fictional character (somehow resurrected from Plato’s dialogues), Filokratos, and put in his mouth opinions, ideas, questions, comments expressed by academic fellows, in a collective spirit. Many thanks to all friends and dialogue partners who paid attention to neutrosophy and connected areas.
Publisher: Infinite Study
ISBN: 159973303X
Category : Neutrosophic logic
Languages : en
Pages : 136
Book Description
In this book the author pledges for the generalization of the Lupasco-Nicolescu’s Law of Included Middle [,
An Introduction to Contact Topology
Author: Hansjörg Geiges
Publisher: Cambridge University Press
ISBN: 1139467956
Category : Mathematics
Languages : en
Pages : 8
Book Description
This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.
Publisher: Cambridge University Press
ISBN: 1139467956
Category : Mathematics
Languages : en
Pages : 8
Book Description
This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.