Nanoporous Catalysts for Biomass Conversion

Nanoporous Catalysts for Biomass Conversion PDF Author: Feng-Shou Xiao
Publisher: John Wiley & Sons
ISBN: 1119128099
Category : Science
Languages : en
Pages : 358

Get Book Here

Book Description
A comprehensive introduction to the design, synthesis, characterization, and catalytic properties of nanoporous catalysts for the biomass conversion With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel catalytic materials for effective and controllable biomass conversion. Edited by two scientists recognized internationally for their pioneering work in the field, this book focuses on nanoporous catalysts, the most promising class of catalytic materials for the conversion of biomass into fuel and other products. Although various catalysts have been used in the conversion of biomass-derived feedstocks, nanoporous catalysts exhibit high catalytic activities and/or unique product selectivities due to their large surface area, open nanopores, and highly dispersed active sites. This book covers an array of nanoporous catalysts currently in use for biomass conversion, including resins, metal oxides, carbons, mesoporous silicates, polydivinylbenzene, and zeolites. The authors summarize the design, synthesis, characterization and catalytic properties of these nanoporous catalysts for biomass conversions, discussing the features of these catalysts and considering future opportunities for developing more efficient catalysts. Topics covered include: Resins for biomass conversion Supported metal oxides/sulfides for biomass oxidation and hydrogenation Nanoporous metal oxides Ordered mesoporous silica-based catalysts Sulfonated carbon catalysts Porous polydivinylbenzene Aluminosilicate zeolites for bio-oil upgrading Rice straw Hydrogenation for sugar conversion Lignin depolymerization Timely, authoritative, and comprehensive, Nanoporous Catalysts for Biomass Conversion is a valuable working resource for academic researchers, industrial scientists and graduate students working in the fields of biomass conversion, catalysis, materials science, green and sustainable chemistry, and chemical/process engineering.

Nanoporous Catalysts for Biomass Conversion

Nanoporous Catalysts for Biomass Conversion PDF Author: Feng-Shou Xiao
Publisher: John Wiley & Sons
ISBN: 1119128099
Category : Science
Languages : en
Pages : 358

Get Book Here

Book Description
A comprehensive introduction to the design, synthesis, characterization, and catalytic properties of nanoporous catalysts for the biomass conversion With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel catalytic materials for effective and controllable biomass conversion. Edited by two scientists recognized internationally for their pioneering work in the field, this book focuses on nanoporous catalysts, the most promising class of catalytic materials for the conversion of biomass into fuel and other products. Although various catalysts have been used in the conversion of biomass-derived feedstocks, nanoporous catalysts exhibit high catalytic activities and/or unique product selectivities due to their large surface area, open nanopores, and highly dispersed active sites. This book covers an array of nanoporous catalysts currently in use for biomass conversion, including resins, metal oxides, carbons, mesoporous silicates, polydivinylbenzene, and zeolites. The authors summarize the design, synthesis, characterization and catalytic properties of these nanoporous catalysts for biomass conversions, discussing the features of these catalysts and considering future opportunities for developing more efficient catalysts. Topics covered include: Resins for biomass conversion Supported metal oxides/sulfides for biomass oxidation and hydrogenation Nanoporous metal oxides Ordered mesoporous silica-based catalysts Sulfonated carbon catalysts Porous polydivinylbenzene Aluminosilicate zeolites for bio-oil upgrading Rice straw Hydrogenation for sugar conversion Lignin depolymerization Timely, authoritative, and comprehensive, Nanoporous Catalysts for Biomass Conversion is a valuable working resource for academic researchers, industrial scientists and graduate students working in the fields of biomass conversion, catalysis, materials science, green and sustainable chemistry, and chemical/process engineering.

Nanoporous Materials for Molecule Separation and Conversion

Nanoporous Materials for Molecule Separation and Conversion PDF Author: Jian Liu
Publisher: Elsevier
ISBN: 0128184884
Category : Technology & Engineering
Languages : en
Pages : 512

Get Book Here

Book Description
Nanoporous Materials for Molecule Separation and Conversion cover the topic with sections on nanoporous material synthesis and characterization, nanoporous materials for molecule separation, and nanoporous materials for energy storage and renewable energy. Typical nanoporous materials including carbon, zeolite, silica and metal-organic frameworks and their applications in molecule separation and energy related applications are covered. In addition, the fundamentals of molecule adsorption and molecule transport in nanoporous materials are also included, providing readers with a stronger understanding of the principles and topics covered. This is an important reference for anyone exploring nanoporous materials, including researchers and postgraduate students in materials science and chemical engineering. In addition, it is ideal for industry professionals working on a wide range of applications for nanoporous materials. - Outlines the fundamental principles of nanoporous materials design - Explores the application of nanoporous materials in important areas such as molecule separation and energy storage - Gives real-life examples of how nanoporous materials are used in a variety of industry sector

Nanomaterials in Biomass Conversion

Nanomaterials in Biomass Conversion PDF Author: Komal Rizwan
Publisher: Elsevier
ISBN: 0443135010
Category : Technology & Engineering
Languages : en
Pages : 534

Get Book Here

Book Description
Nanomaterials in Biomass Conversion: Advances and Applications for Bioenergy, Biofuels and Bio-based Products critically reviews the basic principles through to the latest advances in the emerging field of nanotechnology for the production of biofuels and bioenergy. Divided into 3 parts, the first five chapters explain the fundamentals of nanomaterials, their properties, characterization, and basic processes for synthesis. Part 2, which constitutes the majority of the book, reviews the various methods and technologies for the conversion of biomass to bioenergy, biofuels, and value-added products using nanomaterials. This includes homogeneous and heterogeneous nano-catalytic systems, nano-photocatalytic conversion, nanomaterial-assisted anaerobic digestion, nanoparticles-immobilized enzymes conversion, the production of biogas, volatile fatty acids, and value-added products, and in carbon capture and conversion to sustainable energy products, as well as the potential of nano-biochar, nano-cellulose, and other nanomaterials in microbial fuel cells, bioelectrochemical systems, and batteries. Finally, Part 3 addresses the techno-economics and financial viability in the context of the circular economy, risk related to toxicology, stability, and environmental impacts, and considers the various challenges and future opportunities of biomass conversion through nanomaterials. Nanomaterials in Biomass Conversion is an invaluable resource for researchers and engineers involved in the production of bioenergy, biofuel, and bioproducts, and will also be of benefit to those interested in environmental remediation, pollution management, and cleaner energy production. - Critically examines the role of nanomaterials in the management of waste biomass as applied to bioenergy and biofuels - Explains various nanotechnological methods for the conversion of waste biomass into value-added products - Discusses the basic principles, operational aspects, ongoing developments, and future perspectives related to the applications of nanotechnologies and nanomaterials in biomass conversion - Provides solutions to the key challenges of nanotechnologies and nanomaterials in the conversion of biomass, along with future challenges and risks

Innovations in Thermochemical Technologies for Biofuel Processing

Innovations in Thermochemical Technologies for Biofuel Processing PDF Author: Sonil Nanda
Publisher: Elsevier
ISBN: 0323900755
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book Here

Book Description
Innovations in Thermochemical Technologies for Biofuel Processing broadly covers current technologies in alternate fuels and chemical production, a few of which include biomass-to-liquid, biomass-to-gas and gas-to-liquid biomass conversion technologies. The topics in this book include elaborative discussions on biomass feedstocks, biomass-to-liquid technologies (liquefaction, pyrolysis and transesterification), biomass-to-gas technologies (gasification), gas-to-liquid technologies (syngas fermentation and Fischer-Tropsch synthesis), co-processing technologies, fuel upgrading technologies (hydrotreating and reforming), novel catalyst development for biorefining, biorefining process optimization, unit operations, reaction kinetics, artificial neural network, and much more. The book comprehensively discusses the strengths, weaknesses, opportunities and threats of notable biofuels (e.g., bio-oil, biocrude oil, biodiesel, bioethanol, biobutanol, bio-jet fuels, biohydrogen, biomethane, synthesis gas, hydrocarbon fuels, etc.). - Addresses solutions for clean fuel, energy security, waste management, waste valorization, reduced greenhouse gas emissions, carbon capture and sequestration, circular economy and climate change mitigation - Includes applications of thermochemical conversion and reforming technologies for waste biomass to biofuels - Covers current technologies in alternate fuels and chemicals production, a few of which include conversion technologies (i.e., liquefaction, gasification, pyrolysis, torrefaction, transesterification, organic transformation, carbon-carbon and carbon-heteroatom coupling reactions, oxidation, and reforming processes, etc.), hydrotreating technologies (i.e., hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydrodearomatization and hydrodemetalization) and catalytic processes.

Bio-Based Solvents

Bio-Based Solvents PDF Author: François Jérôme
Publisher: John Wiley & Sons
ISBN: 1119065399
Category : Science
Languages : en
Pages : 188

Get Book Here

Book Description
A multidisciplinary overview of bio-derived solvent applications, life cycle analysis, and strategies required for industrial commercialization This book provides the first and only comprehensive review of the state-of-the-science in bio-derived solvents. Drawing on their own pioneering work in the field, as well as an exhaustive survey of the world literature on the subject, the authors cover all the bases—from bio-derived solvent applications to life cycle analysis to strategies for industrial commercialization—for researchers and professional chemists working across a range of industries. In the increasingly critical area of sustainable chemistry, the search for new and better green solvents has become a top priority. Thanks to their renewability, biodegradability and low toxicity, as well as their potential to promote advantageous organic reactions, green solvents offer the promise of significantly reducing the pernicious effects of chemical processes on human health and the environment. Following an overview of the current solvents markets and the challenges and opportunities presented by bio-derived solvents, a series of dedicated chapters cover all significant classes of solvent arranged by origin and/or chemical structure. Throughout, real-world examples are used to help demonstrate the various advantages, drawbacks, and limitations of each class of solvent. Topics covered include: The commercial potential of various renewably sourced solvents, such as glycerol The various advantages and disadvantages of bio-derived versus petroleum-based solvents Renewably-sourced and waste-derived solvents in the design of eco-efficient processes Life cycle assessment and predictive methods for bio-based solvents Industrial and commercial viability of bio-based solvents now and in the years ahead Potential and limitations of methodologies involving bio-derived solvents New developments and emerging trends in the field and the shape of things to come Considering the vast potential for new and better products suggested by recent developments in this exciting field, Bio-Based Solvents will be a welcome resource among students and researchers in catalysis, organic synthesis, electrochemistry, and pharmaceuticals, as well as industrial chemists involved in manufacturing processes and formulation, and policy makers.

Biorefinery of Inorganics

Biorefinery of Inorganics PDF Author: Erik Meers
Publisher: John Wiley & Sons
ISBN: 1118921453
Category : Technology & Engineering
Languages : en
Pages : 468

Get Book Here

Book Description
Provides complete coverage of the recovery of mineral nutrients from biomass and organic waste This book presents a comprehensive overview of the potential for mineral recovery from wastes, addressing technological issues as well as economic, ecological, and agronomic full-scale field assessments. It serves as a complete reference work for experts in the field and provides teaching material for future experts specializing in environmental technology sectors. Biorefinery of Inorganics: Recovering Mineral Nutrients from Biomass and Organic Waste starts by explaining the concept of using anaerobic digestion as a biorefinery for production of an energy carrier in addition to mineral secondary resources. It then discusses the current state of mineral fertilizer use throughout the world, offering readers a complete look at the resource availability and energy intensity. Technical aspects of mineral recovery organic (waste-)streams is discussed next, followed by an examination of the economics of biobased products and their mineral counterparts. The book also covers the environmental impact assessment of the production and use of bio-based fertilizers; modelling and optimization of nutrient recovery from wastes; and more. Discusses global production and consumption of mineral fertilizers Introduces technologies for the recovery of mineral NPK from organic wastes and residues Covers chemical characterization and speciation of refined secondary resources, and shows readers how to assess biobased mineral resources Discusses applications of recovered minerals in the inorganic chemistry sector Compares the economics of biobased products with current fossil-based counterparts Offers an ecological assessment of introducing biobased products in the current fertilizer industry Edited by leading experts in the field Biorefinery of Inorganics: Recovering Mineral Nutrients from Biomass and Organic Waste is an ideal book for scientists, environmental engineers, and end-users in the agro-industry, the waste industry, water and wastewater treatment, and agriculture. It will also be of great benefit to policy makers and regulators working in these fields.

Nano- and Biocatalysts for Biodiesel Production

Nano- and Biocatalysts for Biodiesel Production PDF Author: Avinash P. Ingle
Publisher: John Wiley & Sons
ISBN: 1119730007
Category : Technology & Engineering
Languages : en
Pages : 371

Get Book Here

Book Description
Reviews recent advances in catalytic biodiesel synthesis, highlighting various nanocatalysts and nano(bio)catalysts developed for effective biodiesel production Nano- and Biocatalysts for Biodiesel Production delivers an essential reference for academic and industrial researchers in biomass valorization and biofuel industries. The book covers both nanocatalysts and biocatalysts, bridging the gap between homogenous and heterogenous catalysis. Readers will learn about the techno-economical and environmental aspects of biodiesel production using different feedstocks and catalysts. They will also discover how nano(bio)catalysts can be used as effective alternatives to conventional catalysts in biodiesel production due to their unique properties, including reusability, high activation energy and rate of reaction, easy recovery, and recyclability. Readers will benefit from the inclusion of: Introductions to CaO nanocatalysts, zeolite nanocatalysts, titanium dioxide-based nanocatalysts and zinc-based in biodiesel production An exploration of carbon-based heterogeneous nanocatalysts for the production of biodiesel Practical discussions of bio-based nano catalysts for biodiesel production and the application of nanoporous materials as heterogeneous catalysts for biodiesel production An analysis of the techno-economical considerations of biodiesel production using different feedstocks Nano- and Biocatalysts for Biodiesel Production focuses on recent advances in the field and offers a complete and informative guide for academic researchers and industrial scientists working in the fields of biofuels and bioenergy, catalysis, biotechnology, bioengineering, nanotechnology, and materials science.

High-Performance Materials from Bio-based Feedstocks

High-Performance Materials from Bio-based Feedstocks PDF Author: Andrew J. Hunt
Publisher: John Wiley & Sons
ISBN: 1119655625
Category : Science
Languages : en
Pages : 436

Get Book Here

Book Description
High-Performance Materials from Bio-based Feedstocks The latest advancements in the production, properties, and performance of bio-based feedstock materials In High-Performance Materials from Bio-based Feedstocks, an accomplished team of researchers delivers a comprehensive exploration of recent developments in the research, manufacture, and application of advanced materials from bio-based feedstocks. With coverage of bio-based polymers, the inorganic components of biomass, and the conversion of biomass to advanced materials, the book illustrates the research and commercial potential of new technologies in the area. Real-life applications in areas as diverse as medicine, construction, synthesis, energy storage, agriculture, packaging, and food are discussed in the context of the structural properties of the materials used. The authors offer deep insights into materials production, properties, and performance. Perfect for chemists, environmental scientists, engineers, and materials scientists, High-Performance Materials from Bio-based Feedstocks will also earn a place in the libraries of academics, industrial researchers, and graduate students with an interest in biomass conversion, green chemistry, and sustainability. A thorough introduction to the latest developments in advanced bio-based feedstock materials research Comprehensive explorations of a vast range of real-world applications, from tissue scaffolds and drug delivery to batteries, sorbents, and controlled release fertilizers Practical discussions of the organic and inorganic components of biomass and the conversion of biomass to advanced materials In-depth examinations of the structural properties of commercially and academically significant biomass materials For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs

Handbook of Biofuels Production

Handbook of Biofuels Production PDF Author: Rafael Luque
Publisher: Woodhead Publishing
ISBN: 0081004567
Category : Technology & Engineering
Languages : en
Pages : 772

Get Book Here

Book Description
Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage. Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines. The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives. - Provides systematic and detailed coverage of the processes and technologies being used for biofuel production - Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage - Reviews the production of both first and second generation biofuels - Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks

Bio-Based Packaging

Bio-Based Packaging PDF Author: Salit Mohd Sapuan
Publisher: John Wiley & Sons
ISBN: 1119381045
Category : Science
Languages : en
Pages : 547

Get Book Here

Book Description
Bio-Based Packaging Bio-Based Packaging An authoritative and up-to-date review of sustainable packaging development and applications Bio-Based Packaging explores using renewable and biodegradable materials as sustainable alternatives to non-renewable, petroleum-based packaging. This comprehensive volume surveys the properties of biopolymers, the environmental and economic impact of bio-based packaging, and new and emerging technologies that are increasing the number of potential applications of green materials in the packaging industry. Contributions address the advantages and challenges of bio-based packaging, discuss new materials to be used for food packaging, and highlight cutting-edge research on polymers such as starch, protein, polylactic acid (PLA), pectin, nanocellulose, and their nanocomposites. In-depth yet accessible chapters provide balanced coverage of a broad range of practical topics, including life cycle assessment (LCA) of bio-based packaging products, consumer perceptions and preferences, supply chains, business strategies and markets in biodegradable food packaging, manufacturing of bio-based packaging materials, and regulations for food packaging materials. Detailed discussions provide valuable insight into the opportunities for biopolymers in end-use sectors, the barriers to biopolymer-based concepts in the packaging market, recent advances made in the field of biopolymeric composite materials, the future of bio-plastics in commercial food packaging, and more. This book: Provides deep coverage of the bio-based packaging development, characterization, regulations and environmental and socio-economic impact Contains real-world case studies of bio-based packaging applications Includes an overview of recent advances and emerging aspects of nanotechnology for development of sustainable composites for packaging Discusses renewable sources for packaging material and the reuse and recycling of bio-based packaging products Bio-Based Packaging is essential reading for academics, researchers, and industry professionals working in packaging materials, renewable resources, sustainability, polymerization technology, food technology, material engineering, and related fields. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs