Nanoparticles and the Immune System

Nanoparticles and the Immune System PDF Author: Diana Boraschi
Publisher: Academic Press
ISBN: 0124079210
Category : Medical
Languages : en
Pages : 139

Get Book

Book Description
Nanoparticles and the Immune System provides a reference text for toxicologists, materials scientists and regulators and covers the key issues of interaction of nanomaterials with the immune system. The book discusses several issues that toxicologists and regulators need to know: identification of endpoints that are relevant for assessing hazard, evaluating impact on immunologically frail populations, and how to evaluate chronic/cumulative effects. In addition, the book addresses the possibility of turning the immunomodulating properties of certain nanomaterials to our advantage for amplifying immune responses in certain diseases or preventive strategies (e.g. vaccination). Identifies endpoints relevant for assessing hazardous situations, evaluating the impact on immunologically frail populations and how to gauge chronic/cumulative effects Raises the awareness of the importance of knowing the effects of the new nanomaterials on our immune system

Nanoparticles and the Immune System

Nanoparticles and the Immune System PDF Author: Diana Boraschi
Publisher: Academic Press
ISBN: 0124079210
Category : Medical
Languages : en
Pages : 139

Get Book

Book Description
Nanoparticles and the Immune System provides a reference text for toxicologists, materials scientists and regulators and covers the key issues of interaction of nanomaterials with the immune system. The book discusses several issues that toxicologists and regulators need to know: identification of endpoints that are relevant for assessing hazard, evaluating impact on immunologically frail populations, and how to evaluate chronic/cumulative effects. In addition, the book addresses the possibility of turning the immunomodulating properties of certain nanomaterials to our advantage for amplifying immune responses in certain diseases or preventive strategies (e.g. vaccination). Identifies endpoints relevant for assessing hazardous situations, evaluating the impact on immunologically frail populations and how to gauge chronic/cumulative effects Raises the awareness of the importance of knowing the effects of the new nanomaterials on our immune system

Interaction of Nanomaterials with the Immune System

Interaction of Nanomaterials with the Immune System PDF Author: James C. Bonner
Publisher: Springer Nature
ISBN: 3030339629
Category : Medical
Languages : en
Pages : 229

Get Book

Book Description
This book covers the latest information related to understanding immune responses to engineered nanomaterials (ENMs). Many ENMs used in both the consumer and biomedical fields have been reported to elicit adverse immune responses ranging from innate immune responses such as complement activation to changes in adaptive immunity that influence pathogen responses and promote disease states such as asthma. Interaction of Nanomaterials with the Immune System covers the most up to date information on our understanding of immune responses to ENMs across a wide range of topics including innate immunity, allergic immune responses, adaptive provides the reader with (1) up to date understanding of immune responses to ENMs; (2) current testing methods; and (3) appropriate models including alternative testing strategies for evaluating immunotoxicity of ENMs.

Interaction of Nanomaterials With the Immune System: Role in Nanosafety and Nanomedicine

Interaction of Nanomaterials With the Immune System: Role in Nanosafety and Nanomedicine PDF Author: Paola Italiani
Publisher: Frontiers Media SA
ISBN: 2889453871
Category :
Languages : en
Pages : 177

Get Book

Book Description
The immune system has the double role of maintaining tissue integrity and homeostasis and of protecting the organism from possible dangers, from invading pathogens to environmentally-borne dangerous chemicals. New chemicals recognisable by the immune system are engineered nanomaterials/ nanoparticles, new agents in our environment that are becoming common due to their presence in many products, from constructions and building material (e.g., solar cells, pigments and paints, tilesand masonry materials) to daily products (e.g., food packaging, cosmetics, and cigarettes). Human beings can be accidentally exposed to engineered nanomaterials when these are released from products containing them or during production in workplaces. Furthermore, intentional exposure occurs in medicine, as engineered nanoparticles are used as tools for improving delivery of drugs and vaccines, vaccine adjuvants and contrast agents in therapeutic, preventive and diagnostic strategies. Nanoparticles that come in contact with the immune system after unintentional exposure need to be eliminated from the organism as they represent a potential threat. In this case, however, due to their peculiar characteristics of size, shape, surface charge and persistence, nanoparticles may elicit undesirable reactions and have detrimental effects on the immune system, such as cytotoxicity, inflammation, anaphylaxis, immunosuppression. Conversely, nanomedicines need to escape immune recognition/elimination and must persist in the organism long enough for reaching their target and exerting their beneficial effects. Immune cells and molecules at the body surface (airway and digestive mucosae, skin) are the first that come in contact with nanomaterials upon accidental exposure, while immune effectors in blood are those that more easily come in contact with nanomedical products. Thus, evaluating the interaction of the immune system with nanoparticles/nanomaterials is a topic of key importance both in nanotoxicology and in nanomedicine. Immuno-nanosafety studies consider both accidental exposure to nanoparticles, which may occur by skin contact, ingestion or inhalation (at doses and with a frequency that are not known), and medical exposure, which takes place with a defined administration schedule (route, dose, frequency). Many studies focus on the interaction between the immune system and nanoparticles that, for medical purposes, have been specifically modified to stimulate immunity or to avoid immune recognition, as in the case of vaccine carriers/adjuvants or drug delivery systems, respectively. The aims of this Research Topic is to provide an overview of recent strategies: 1.for assessing the immunosafety of engineered nanomaterials/nanoparticles, in particular in terms of activation of inflammatory responses, such as complement activation and allergic reactions, based on the nanomaterial intrinsic characteristics and on the possible carry-over of bioactive contaminants such as LPS. Production of new nanoparticles taking into account their effects on immune responses, in order to avoid undesirable effects on one hand, and to design particles with desirable effects for medical applications on the other hand; 2.for designing more effective nanomedicines by either avoiding or exploiting their interaction with the immune systems, with particular focus on cancer diagnosis and therapy, and vaccination. This collection of articles gives a comprehensive view of the state-of-the-art of the interaction of nanoparticles with the immune system from the two perspectives of safety and medical use, and aims at providing immunologists with the relevant knowledge for designing improved strategies for immunologically safe nanomaterial applications.

SET NANOPARTICLES AND THE IMMUNE SYSTEM.

SET NANOPARTICLES AND THE IMMUNE SYSTEM. PDF Author: SHYAMASREE. GHOSH
Publisher:
ISBN: 9783110656664
Category :
Languages : en
Pages :

Get Book

Book Description


Human Immune System

Human Immune System PDF Author: Shyamasree Ghosh
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110655853
Category : Science
Languages : en
Pages : 151

Get Book

Book Description
The fast development in the field of nanotechnology has led to a high variety of nanoparticles. Nanoparticles find importance in every sphere of human lives and more so in the recent years have tremendous applications in the sector of biomedical clinical medicine as diagnostic, prognostic and imaging tools. Their risk to human and animal life as well as to the environment is still unclear. Therefore, the study of the impact of nanoparticles on human and animal life is important. Volume I highlights the impact of nanoparticles on the human immune system. While discussing the basic biology of the immune system, this book highlights the downstream effect of nanoparticles on the human immune system. Research studies on the development of better and more effective nanoparticles with more precise and accurate effects and with toxic minimal side effects are discussed in the book. Both volumes are also included in a set ISBN 978-3-11-065666-4.

Emerging Nanotechnologies in Immunology

Emerging Nanotechnologies in Immunology PDF Author: Ranjita Shegokar
Publisher: William Andrew
ISBN: 0323401139
Category : Medical
Languages : en
Pages : 290

Get Book

Book Description
Emerging Nanotechnologies in Immunology: The Design, Applications and Toxicology of Nanopharmaceuticals and Nanovaccines aims to deliver a systematic and comprehensive review of data concerning the nature of interaction and nano-related risks between the nanopharmaceuticals currently in the pipeline of S&T development for skin, ocular and nasal drug delivery, including absorption, toxicity, and the ability to distribute after systemic exposure. The book's contributors address a representative set of the broad spectrum of nanopharmaceutics presently being used, including cationic lipid nanoparticles, polymeric PLGA, PLA nanoparticles, biomacromolecules-based nanoparticles, and other scaffolds tissue-engineered skin substitutes. In addition, regulation and risk are also covered since the safety of these nanopharmaceuticals still represents a barrier to their wide and innovative use. Provides a thorough knowledge of the safety aspects of nanopharmaceuticals currently under research Focuses on the characterization and quantification of nanopharmaceutics to allow readers to understand the correlation between the nature of the materials and their potential nanotoxicological effects Includes a thorough overview of legal and regulatory aspects and a discussion of the ethical issues related to the R&D of nanopharmaceuticals

Handbook of Immunological Properties of Engineered Nanomaterials

Handbook of Immunological Properties of Engineered Nanomaterials PDF Author: Marina Dobrovolskaia
Publisher: World Scientific
ISBN: 9814390259
Category : Medical
Languages : en
Pages : 721

Get Book

Book Description
The Handbook of Immunological Properties of Engineered Nanomaterials provides a comprehensive overview of the current literature, methodologies, and translational and regulatory considerations in the field of nanoimmunotoxicology. The main subject is the immunological properties of engineered nanomaterials. Focus areas include interactions between engineered nanomaterials and red blood cells, platelets, endothelial cells, professional phagocytes, T cells, B cells, dendritic cells, complement and coagulation systems, and plasma proteins, with discussions on nanoparticle sterility and sterilization. Each chapter presents a broad literature review of the given focus area, describes protocols and resources available to support research in the individual focus areas, highlights challenges, and outlines unanswered questions and future directions. In addition, the Handbook includes an overview of and serves a guide to the physicochemical characterization of engineered nanomaterials essential to conducting meaningful immunological studies of nanoparticles. Regulations related to immunotoxicity testing of materials prior to their translation into the clinic are also reviewed.The Handbook is written by top experts in the field of nanomedicine, nanotechnology, and translational bionanotechnology, representing academia, government, industry, and consulting organizations, and regulatory agencies. The Handbook is designed to serve as a textbook for students, a practical guide for research laboratories, and an informational resource for scientific consultants, reviewers, and policy makers. It is written such that both experts and beginners will find the information highly useful and applicable.

Interaction of Nanomaterials with the Immune System: Role in Nanosafety and Nanomedicinenanomedicine

Interaction of Nanomaterials with the Immune System: Role in Nanosafety and Nanomedicinenanomedicine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book

Book Description
The immune system has the double role of maintaining tissue integrity and homeostasis and of protecting the organism from possible dangers, from invading pathogens to environmentally-borne dangerous chemicals. New chemicals recognisable by the immune system are engineered nanomaterials/ nanoparticles, new agents in our environment that are becoming common due to their presence in many products, from constructions and building material (e.g., solar cells, pigments and paints, tiles and masonry materials) to daily products (e.g., food packaging, cosmetics, and cigarettes). Human beings can be accidentally exposed to engineered nanomaterials when these are released from products containing them or during production in workplaces. Furthermore, intentional exposure occurs in medicine, as engineered nanoparticles are used as tools for improving delivery of drugs and vaccines, vaccine adjuvants and contrast agents in therapeutic, preventive and diagnostic strategies. Nanoparticles that come in contact with the immune system after unintentional exposure need to be eliminated from the organism as they represent a potential threat. In this case, however, due to their peculiar characteristics of size, shape, surface charge and persistence, nanoparticles may elicit undesirable reactions and have detrimental effects on the immune system, such as cytotoxicity, inflammation, anaphylaxis, immunosuppression. Conversely, nanomedicines need to escape immune recognition/elimination and must persist in the organism long enough for reaching their target and exerting their beneficial effects. Immune cells and molecules at the body surface (airway and digestive mucosae, skin) are the first that come in contact with nanomaterials upon accidental exposure, while immune effectors in blood are those that more easily come in contact with nanomedical products. Thus, evaluating the interaction of the immune system with nanoparticles/nanomaterials is a topic of key importance both in nanotoxicology and in nanomedicine. Immuno-nanosafety studies consider both accidental exposure to nanoparticles, which may occur by skin contact, ingestion or inhalation (at doses and with a frequency that are not known), and medical exposure, which takes place with a defined administration schedule (route, dose, frequency). Many studies focus on the interaction between the immune system and nanoparticles that, for medical purposes, have been specifically modified to stimulate immunity or to avoid immune recognition, as in the case of vaccine carriers/adjuvants or drug delivery systems, respectively. The aims of this Research Topic is to provide an overview of recent strategies: 1.for assessing the immunosafety of engineered nanomaterials/nanoparticles, in particular in terms of activation of inflammatory responses, such as complement activation and allergic reactions, based on the nanomaterial intrinsic characteristics and on the possible carry-over of bioactive contaminants such as LPS. Production of new nanoparticles taking into account their effects on immune responses, in order to avoid undesirable effects on one hand, and to design particles with desirable effects for medical applications on the other hand; 2.for designing more effective nanomedicines by either avoiding or exploiting their interaction with the immune systems, with particular focus on cancer diagnosis and therapy, and vaccination. This collection of articles gives a comprehensive view of the state-of-the-art of the interaction of nanoparticles with the immune system from the two perspectives of safety and medical use, and aims at providing immunologists with the relevant knowledge for designing improved strategies for immunologically safe nanomaterial applications.

Micro- and Nanotechnology in Vaccine Development

Micro- and Nanotechnology in Vaccine Development PDF Author: Mariusz Skwarczynski
Publisher: William Andrew
ISBN: 0323400299
Category : Medical
Languages : en
Pages : 460

Get Book

Book Description
This book provides a comprehensive overview of how use of micro- and nanotechnology (MNT) has allowed major new advance in vaccine development research, and the challenges that immunologists face in making further progress. MNT allows the creation of particles that exploit the inherent ability of the human immune system to recognize small particles such as viruses and toxins. In combination with minimal protective epitope design, this permits the creation of immunogenic particles that stimulate a response against the targeted pathogen. The finely tuned response of the human immune system to small particles makes it unsurprising that many of the lead adjuvants and vaccine delivery systems currently under investigation are based on nanoparticles. Provides a comprehensive and unparalleled overview of the role of micro- and nanotechnology in vaccine development Allows researchers to quickly familiarize themselves with the broad spectrum of vaccines and how micro- and nanotechnologies are applied to their development Includes a combination of overview chapters setting out general principles, and focused content dealing with specific vaccines, making it useful to readers from a variety of disciplines

Unraveling the Safety Profile of Nanoscale Particles and Materials

Unraveling the Safety Profile of Nanoscale Particles and Materials PDF Author: Andreia Ferreira de Castro Gomes
Publisher: BoD – Books on Demand
ISBN: 9535139398
Category : Technology & Engineering
Languages : en
Pages : 174

Get Book

Book Description
As nanomaterials become increasingly present in our daily lives, pertinent questions regarding their safety arise. Nanomaterial risk assessment, as in other areas, directs much of the effort worldwide in defining guidelines that may be translated into national or international directives. Nanomaterials encompass different entities, from nanoparticles to nanostructured materials, with specific effects over cells, tissues, organisms and ecosystems depending on their biophysical characteristics. Such interactions will directly affect the impact of novel nanotechnologies. This book aims to provide the reader with a comprehensive overview of the current state of the art in nanotoxicology, featuring the most important developments and critical issues regarding the use of and exposure to nanoparticles.