Nanocrystal-polymer Nanocomposite Electrochromic Device

Nanocrystal-polymer Nanocomposite Electrochromic Device PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

Nanocrystal-polymer Nanocomposite Electrochromic Device

Nanocrystal-polymer Nanocomposite Electrochromic Device PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

Electrochromic Materials and Devices

Electrochromic Materials and Devices PDF Author: Roger J. Mortimer
Publisher: John Wiley & Sons
ISBN: 3527336109
Category : Technology & Engineering
Languages : en
Pages : 668

Get Book Here

Book Description
Electrochromic materials can change their properties under the influence of an electrical voltage or current. Different classes of materials show this behavior such as transition metal oxides, conjugated polymers, metal-coordinated complexes and organic molecules. As the color change is persistent, the electric field needs only to be applied to initiate the switching, allowing for applications such as low-energy consumption displays, light-adapting mirrors in the automobile industry and smart windows for which the amount of transmitted light and heat can be controlled. The first part of this book describes the different classes and processing techniques of electrochromic materials. The second part highlights nanostructured electrochromic materials and device fabrication, and the third part focuses on the applications such as smart windows, adaptive camouflage, biomimicry, wearable displays and fashion. The last part rounds off the book by device case studies and environmental impact issues.

Conducting Polymer-Based Nanocomposites

Conducting Polymer-Based Nanocomposites PDF Author: Ayesha Kausar
Publisher: Elsevier
ISBN: 0128224649
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. - Integrates the fundamentals of conducting polymers and a range of multifunctional applications - Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials - Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers - Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices

Charge Transport in Metal Oxide Nanocrystal-based Materials

Charge Transport in Metal Oxide Nanocrystal-based Materials PDF Author: Evan Lars Runnerstrom
Publisher:
ISBN:
Category :
Languages : en
Pages : 247

Get Book Here

Book Description
There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte matrix, and that the morphology and properties of the nanocomposites can be manipulated by changing the chemical composition of the deposition solution. Careful application of AC impedance spectroscopy techniques and DC measurements are used to show that the nanocomposites exhibit mixed ionic and electronic conductivity, where electronic charge is transported through the ITO nanocrystal phase, and ionic charge is transported through the polymer matrix phase. Additionally, systematic changes in ionic and electronic conductivity with morphology are measured. The synthetic methods developed here and understanding of charge transport ultimately lead to the fabrication of a solid state nanocomposite electrochromic device based on nanocrystals of ITO and cerium oxide. Part II of this dissertation considers electron transport within individual metal oxide nanocrystals themselves. It primarily examines relationships between synthetic chemistry, doping mechanisms in metal oxides, and the accompanying physics of free carrier scattering within the interior of highly doped metal oxide nanocrystals, with particular mind paid to ITO nanocrystals. Additionally, synthetic methods as well as metal oxide defect chemistry influences the balance between activation and compensation of dopants, which limits the nanocrystals' free carrier concentration. Furthermore, because of ionized impurity scattering of the oscillating electrons by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration and mobilities. In particular, efforts to address these limitations by developing new nanocrystal materials (with careful consideration of structure-property relationships) are described. Synthetic control of nanocrystal shape is also explored. Each of these topics have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. Part II culminates as the defect chemistry of metal oxides is identified as a major factor influencing LSPR and charge transport in doped metal oxide nanocrystals. Aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons, and this electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3) is described. Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm2/Vs are measured optically, well above the optical mobility for ITO nanocrystals. The microscopic mechanisms underlying this enhanced mobility are investigated with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. Absorption spectra of single Ce:In2O3 nanocrystals are used to determine the dielectric function, and simulations predict strong near field enhancement of mid-IR light, especially around the vertices of Ce:In2O3 nanocubes. Part III examines how the defect chemistry of metal oxides can be used to manipulate not only electronic transport, but also ionic transport in materials that are relevant for high temperature electrochemistry. Over the past few years, the observation of unexpected but significant proton conductivity in porous, nanocrystalline ceramics has generated substantial scientific interest mirroring the excitement surrounding ionic conduction in other nanostructured or porous materials. Numerous studies, to varying degrees of success, have attempted to describe or control the mechanisms that enable proton motion in nanocrystalline ceramics. Here, colloidally synthesized ceramic nanocrystals of cerium oxide (CeO\textsubscript{2}) and titanium oxide (TiO\textsubscript{2}) are utilized to systematically study how grain size, microporosity, and composition influence proton conduction. By measuring the temperature-dependent impedance of porous thin films of these nanocrystals under dry and wet atmospheres, it was found that both CeO2 and TiO2 display significant proton conductivity at intermediate temperatures between 100C and 350C. Furthermore, oxygen activity strongly impacts proton transport; using oxygen as a carrier gas drastically reduced the proton conductivity by up to 60 times. Together, these results suggest that the most likely source of mobile protons in these systems is dissociative adsorption of water at surface oxygen vacancies, with composition, nanocrystal size, and oxide defect equilibria influencing the surface activity toward this reaction and hence the proton conductivity.

Nanoparticle-Based Polymer Composites

Nanoparticle-Based Polymer Composites PDF Author: Sanjay Mavinkere Rangappa
Publisher: Woodhead Publishing
ISBN: 0323853293
Category : Technology & Engineering
Languages : en
Pages : 552

Get Book Here

Book Description
Nanoparticle-Based Polymer Composites discusses recent advancements on the synthesis, processing, characterization and applications of this new class of hybrid materials. Chapters cover recycling and lifecycle assessment, with contributions from leading researchers in industry, academics, the government and private research institutes from across the globe. As nanoparticle-based polymer composites are now replacing traditional polymer composites in a broad range of applications such as fuel cells, electronic and biomedical devices, this book presents the latest advancements in the field.Studies have shown that incorporating metal nanoparticles in polymer matrices can improve their mechanical, thermal, electrical and barrier properties. The unique combination of these properties makes this new class of materials suitable for a broad range of different and advanced applications. - Features recent advancements on the synthesis, processing and characterization of nanoparticle-based polymer composites - Discusses recycling and lifecycle assessment - Highly application-orientated, with contributions from leading international researchers in industry, academia, the government and private research institutes

Polymer Electrolytes

Polymer Electrolytes PDF Author: Tan Winie
Publisher: John Wiley & Sons
ISBN: 3527342001
Category : Science
Languages : en
Pages : 416

Get Book Here

Book Description
A comprehensive overview of the main characterization techniques of polymer electrolytes and their applications in electrochemical devices Polymer Electrolytes is a comprehensive and up-to-date guide to the characterization and applications of polymer electrolytes. The authors ? noted experts on the topic ? discuss the various characterization methods, including impedance spectroscopy and thermal characterization. The authors also provide information on the myriad applications of polymer electrolytes in electrochemical devices, lithium ion batteries, supercapacitors, solar cells and electrochromic windows. Over the past three decades, researchers have been developing new polymer electrolytes and assessed their application potential in electrochemical and electrical power generation, storage, and conversion systems. As a result, many new polymer electrolytes have been found, characterized, and applied in electrochemical and electrical devices. This important book: -Reviews polymer electrolytes, a key component in electrochemical power sources, and thus benefits scientists in both academia and industry -Provides an interdisciplinary resource spanning electrochemistry, physical chemistry, and energy applications -Contains detailed and comprehensive information on characterization and applications of polymer electrolytes Written for materials scientists, physical chemists, solid state chemists, electrochemists, and chemists in industry professions, Polymer Electrolytes is an essential resource that explores the key characterization techniques of polymer electrolytes and reveals how they are applied in electrochemical devices.

Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors

Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors PDF Author: Shivani Dhall
Publisher: Elsevier
ISBN: 012823069X
Category : Technology & Engineering
Languages : en
Pages : 270

Get Book Here

Book Description
Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors: Applications, Fabrication and Commercialization sets out how carbon nanomaterials based chemiresistive gas sensor are made, and their applications at lab and industrial levels. The book focuses on major advances in the field of chemiresistive gas sensors in recent years and their potential applications in environmental monitoring and healthcare. Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors: Applications, Fabrication and Commercialization provides systematic and effective guidelines to the researchers as well as learners about sensor, their fabrication and applications. Chemiresistive sensors are widely used in automation of numerous industrial processes as well as for everyday monitoring of various activities as public safety, engine performance, medical therapeutics, and in many other situations hence the book will catch the attention of readers and motivate them for advanced research for the development of smart and efficient gas sensors. With full coverage of the state of the art in this active research field, the book will appeal to researchers in a broad range of disciplines, including nanotechnology, engineering, materials science, chemistry and physics. - Offers a one-stop resource, bringing together information currently scattered over journal papers, industrial/lab outcomes and project reports - Presents information about the properties, synthesis of nanomaterials, their device fabrication and applications as sensing materials - Combining fundamental, experimental and theoretical knowledge with industrial needs and engineering design methods

Study of Nanocrystal/Polymer Nanocomposites and Their Optical Applications

Study of Nanocrystal/Polymer Nanocomposites and Their Optical Applications PDF Author: Guan-Hong Chen
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Electrochromism and Electrochromic Devices

Electrochromism and Electrochromic Devices PDF Author: Paul Monk
Publisher: Cambridge University Press
ISBN: 1139465562
Category : Technology & Engineering
Languages : en
Pages :

Get Book Here

Book Description
Electrochromic materials, both organic and inorganic, have widespread applications in light-attenuation, displays and analysis. Written in an accessible manner, this book provides a comprehensive treatment of all types of electrochromic systems and their many applications. Coverage develops from electrochromic scope and history to new searching presentations of optical quantification and theoretical mechanistic models. Non-electrode electrochromism and photo-electrochromism are summarised, with updated comprehensive reviews of electrochromic oxides (tungsten-trioxide particularly), metal co-ordination complexes and metal-cyanometallates, viologens and other organics; and more recent exotics such as fullerenes, hydrides, and conjugated electroactive polymers are also covered. The book concludes by examining device construction and durability. With an extensive bibliography, recent advances in the field, modern applications and a step-by-step development from simple examples to sophisticated theories, this book is ideal for researchers in materials science, polymer science, electrical engineering, physics, chemistry, bioscience and (applied) optoelectronics.

One-Dimensional Polymeric Nanocomposites

One-Dimensional Polymeric Nanocomposites PDF Author: Ram K. Gupta
Publisher: CRC Press
ISBN: 1000824306
Category : Science
Languages : en
Pages : 525

Get Book Here

Book Description
One-dimensional nanomaterials are emerging as promising materials for their many unique characteristics. This book covers their synthesis and applications in batteries, supercapacitors, fuel cells, solar cells, green energy production, flexible electronics, electrochemical sensors, and biomedicine. Progress in nanotechnology offers an opportunity to synthesize materials with unique properties. The properties of nanomaterials can be further improved by growing them in one-dimension structural with variations in their architecture. One-dimensional polymeric nanocomposites offer various advantages such as nano dimensions, high surface area, structural stability, and the ability to tune their electrochemical, electronic, and optical properties. The book covers basic concepts, chemistries, properties, and the importance of one-dimensional nanomaterials, along with their wide applications and state-of-the-art progress in the energy, flexible electronics, sensor, and biomedical fields. The fundamentals of electrochemical behavior and their understanding for various applications are also discussed in detail. This book will provide new direction to scientists, researchers, and students to better understand the chemistry, technologies, and applications of one-dimensional polymeric nanocomposites.