Author: Krzysztof Iniewski
Publisher: CRC Press
ISBN: 143984836X
Category : Technology & Engineering
Languages : en
Pages : 600
Book Description
With contributions from top international experts from both industry and academia, Nano-Semiconductors: Devices and Technology is a must-read for anyone with a serious interest in future nanofabrication technologies. Taking into account the semiconductor industry’s transition from standard CMOS silicon to novel device structures—including carbon nanotubes (CNT), graphene, quantum dots, and III-V materials—this book addresses the state of the art in nano devices for electronics. It provides an all-encompassing, one-stop resource on the materials and device structures involved in the evolution from micro- to nanoelectronics. The book is divided into three parts that address: Semiconductor materials (i.e., carbon nanotubes, memristors, and spin organic devices) Silicon devices and technology (i.e., BiCMOS, SOI, various 3D integration and RAM technologies, and solar cells) Compound semiconductor devices and technology This reference explores the groundbreaking opportunities in emerging materials that will take system performance beyond the capabilities of traditional CMOS-based microelectronics. Contributors cover topics ranging from electrical propagation on CNT to GaN HEMTs technology and applications. Approaching the trillion-dollar nanotech industry from the perspective of real market needs and the repercussions of technological barriers, this resource provides vital information about elemental device architecture alternatives that will lead to massive strides in future development.
Nano-Semiconductors
Author: Krzysztof Iniewski
Publisher: CRC Press
ISBN: 143984836X
Category : Technology & Engineering
Languages : en
Pages : 600
Book Description
With contributions from top international experts from both industry and academia, Nano-Semiconductors: Devices and Technology is a must-read for anyone with a serious interest in future nanofabrication technologies. Taking into account the semiconductor industry’s transition from standard CMOS silicon to novel device structures—including carbon nanotubes (CNT), graphene, quantum dots, and III-V materials—this book addresses the state of the art in nano devices for electronics. It provides an all-encompassing, one-stop resource on the materials and device structures involved in the evolution from micro- to nanoelectronics. The book is divided into three parts that address: Semiconductor materials (i.e., carbon nanotubes, memristors, and spin organic devices) Silicon devices and technology (i.e., BiCMOS, SOI, various 3D integration and RAM technologies, and solar cells) Compound semiconductor devices and technology This reference explores the groundbreaking opportunities in emerging materials that will take system performance beyond the capabilities of traditional CMOS-based microelectronics. Contributors cover topics ranging from electrical propagation on CNT to GaN HEMTs technology and applications. Approaching the trillion-dollar nanotech industry from the perspective of real market needs and the repercussions of technological barriers, this resource provides vital information about elemental device architecture alternatives that will lead to massive strides in future development.
Publisher: CRC Press
ISBN: 143984836X
Category : Technology & Engineering
Languages : en
Pages : 600
Book Description
With contributions from top international experts from both industry and academia, Nano-Semiconductors: Devices and Technology is a must-read for anyone with a serious interest in future nanofabrication technologies. Taking into account the semiconductor industry’s transition from standard CMOS silicon to novel device structures—including carbon nanotubes (CNT), graphene, quantum dots, and III-V materials—this book addresses the state of the art in nano devices for electronics. It provides an all-encompassing, one-stop resource on the materials and device structures involved in the evolution from micro- to nanoelectronics. The book is divided into three parts that address: Semiconductor materials (i.e., carbon nanotubes, memristors, and spin organic devices) Silicon devices and technology (i.e., BiCMOS, SOI, various 3D integration and RAM technologies, and solar cells) Compound semiconductor devices and technology This reference explores the groundbreaking opportunities in emerging materials that will take system performance beyond the capabilities of traditional CMOS-based microelectronics. Contributors cover topics ranging from electrical propagation on CNT to GaN HEMTs technology and applications. Approaching the trillion-dollar nanotech industry from the perspective of real market needs and the repercussions of technological barriers, this resource provides vital information about elemental device architecture alternatives that will lead to massive strides in future development.
Semiconductor Nanotechnology
Author: Stephen M. Goodnick
Publisher: Springer
ISBN: 3319918966
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Energy and information are interconnected and are essential elements for the development of human society. Transmission, processing and storage of information requires energy consumption, while the efficient use and access to new energy sources requires new information (ideas and expertise) and the design of novel systems such as photovoltaic devices, fuel cells and batteries. Semiconductor physics creates the knowledge base for the development of information (computers, cell phones, etc.) and energy (photovoltaic) technologies. The exchange of ideas and expertise between these two technologies is critical and expands beyond semiconductors. Continued progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions, new materials are being introduced into electronics manufacturing at an unprecedented rate, and alternative technologies to mainstream CMOS are evolving. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Semiconductor Nanotechnology features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors, quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.
Publisher: Springer
ISBN: 3319918966
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Energy and information are interconnected and are essential elements for the development of human society. Transmission, processing and storage of information requires energy consumption, while the efficient use and access to new energy sources requires new information (ideas and expertise) and the design of novel systems such as photovoltaic devices, fuel cells and batteries. Semiconductor physics creates the knowledge base for the development of information (computers, cell phones, etc.) and energy (photovoltaic) technologies. The exchange of ideas and expertise between these two technologies is critical and expands beyond semiconductors. Continued progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions, new materials are being introduced into electronics manufacturing at an unprecedented rate, and alternative technologies to mainstream CMOS are evolving. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Semiconductor Nanotechnology features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors, quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.
Semiconductor Nanomaterials for Flexible Technologies
Author: Yugang Sun
Publisher: William Andrew
ISBN: 1437778240
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
This book is an overview of the strategies to generate high-quality films of one-dimensional semiconductor nanostructures on flexible substrates (e.g., plastics) and the use of them as building blocks to fabricating flexible devices (including electronics, optoelectronics, sensors, power systems). In addition to engineering aspects, the physics and chemistry behind the fabrication and device operation will also be discussed as well. Internationally recognized scientists from academia, national laboratories, and industries, who are the leading researchers in the emerging areas, are contributing exceptional chapters according to their cutting-edge research results and expertise. This book will be an on-time addition to the literature in nanoscience and engineering. It will be suitable for graduate students and researchers as a useful reference to stimulate their research interest as well as facilitate their research in nanoscience and engineering. - Considers the physics and chemistry behind fabrication and device operation - Discusses applications to electronics, optoelectronics, sensors and power systems - Examines existing technologies and investigates emerging trends
Publisher: William Andrew
ISBN: 1437778240
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
This book is an overview of the strategies to generate high-quality films of one-dimensional semiconductor nanostructures on flexible substrates (e.g., plastics) and the use of them as building blocks to fabricating flexible devices (including electronics, optoelectronics, sensors, power systems). In addition to engineering aspects, the physics and chemistry behind the fabrication and device operation will also be discussed as well. Internationally recognized scientists from academia, national laboratories, and industries, who are the leading researchers in the emerging areas, are contributing exceptional chapters according to their cutting-edge research results and expertise. This book will be an on-time addition to the literature in nanoscience and engineering. It will be suitable for graduate students and researchers as a useful reference to stimulate their research interest as well as facilitate their research in nanoscience and engineering. - Considers the physics and chemistry behind fabrication and device operation - Discusses applications to electronics, optoelectronics, sensors and power systems - Examines existing technologies and investigates emerging trends
Nano Semiconducting Materials
Author: R. Saravanan
Publisher: Materials Research Forum LLC
ISBN: 1945291052
Category : Technology & Engineering
Languages : en
Pages : 183
Book Description
Due to their unique optical, thermal, catalytic, magnetic and electronic properties, nano-sized semiconductors have a huge potential in a great number of technological applications, ranging from photovoltaics and photocatalysis to biosensors and medicine. In the last couple of decades, the synthesis and characterization of these materials has been of key interest not only to materials scientists but also to researchers working in the field of physics, chemistry, molecular biology and medicine. The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2. Of special interest has been the analysis of the electron density distribution within the nano samples. The results give deep insights into the atomic structures on which these crystals are based and on the binding characteristics between the atoms and the ways in which these characteristics can be changed. As the decisive properties of these materials depend upon the electron density distributions and their variations due to sample preparation specifics, temperature and the presence of doping elements, these results give important hints on the direction in which further research should be directed.
Publisher: Materials Research Forum LLC
ISBN: 1945291052
Category : Technology & Engineering
Languages : en
Pages : 183
Book Description
Due to their unique optical, thermal, catalytic, magnetic and electronic properties, nano-sized semiconductors have a huge potential in a great number of technological applications, ranging from photovoltaics and photocatalysis to biosensors and medicine. In the last couple of decades, the synthesis and characterization of these materials has been of key interest not only to materials scientists but also to researchers working in the field of physics, chemistry, molecular biology and medicine. The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2. Of special interest has been the analysis of the electron density distribution within the nano samples. The results give deep insights into the atomic structures on which these crystals are based and on the binding characteristics between the atoms and the ways in which these characteristics can be changed. As the decisive properties of these materials depend upon the electron density distributions and their variations due to sample preparation specifics, temperature and the presence of doping elements, these results give important hints on the direction in which further research should be directed.
Introduction to Nano Solar Cells
Author: Ning Dai
Publisher: CRC Press
ISBN: 1000294757
Category : Science
Languages : en
Pages : 560
Book Description
This book presents the applications of nanomaterials and nanostructures in photovoltaic solar cells, elaborates how they can help achieve high photoelectric conversion efficiency, and introduces readers to the important work done in this field. It covers the basic physical properties of semiconductors and nanomaterials, as well as the formation and characteristics of the p–n junction and the heterojunction; the basic working principle and structures of nano photovoltaic cells; the important parts of nano photovoltaic cells, namely nano surface trapping and electrodes; nano solar cells based on quantum dots, quantum wires, and organic-inorganic hybrid nano photovoltaic cells; and some reported high-efficiency photovoltaic cells. It also discusses various device structures and important growth techniques for obtaining nanomaterials for solar cells. The book will serve as a useful reference or textbook for researchers, teachers, engineers, and graduate students.
Publisher: CRC Press
ISBN: 1000294757
Category : Science
Languages : en
Pages : 560
Book Description
This book presents the applications of nanomaterials and nanostructures in photovoltaic solar cells, elaborates how they can help achieve high photoelectric conversion efficiency, and introduces readers to the important work done in this field. It covers the basic physical properties of semiconductors and nanomaterials, as well as the formation and characteristics of the p–n junction and the heterojunction; the basic working principle and structures of nano photovoltaic cells; the important parts of nano photovoltaic cells, namely nano surface trapping and electrodes; nano solar cells based on quantum dots, quantum wires, and organic-inorganic hybrid nano photovoltaic cells; and some reported high-efficiency photovoltaic cells. It also discusses various device structures and important growth techniques for obtaining nanomaterials for solar cells. The book will serve as a useful reference or textbook for researchers, teachers, engineers, and graduate students.
Introductory Quantum Mechanics for Semiconductor Nanotechnology
Author: Dae Mann Kim
Publisher: John Wiley & Sons
ISBN: 3527409750
Category : Science
Languages : en
Pages : 469
Book Description
The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals.
Publisher: John Wiley & Sons
ISBN: 3527409750
Category : Science
Languages : en
Pages : 469
Book Description
The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals.
Raman Spectroscopy and its Application in Nanostructures
Author: Shu-Lin Zhang
Publisher: John Wiley & Sons
ISBN: 1119966787
Category : Science
Languages : en
Pages : 519
Book Description
Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nanotubes, quantum wells, silicon nanowires, etc., it is fast becoming one of the most powerful and sensitive experimental techniques to characterize the qualities of such nanostructures. Recent scientific and technological developments have resulted in the applications of Raman spectroscopy to expand. These developments are vital in providing information for a very broad field of applications: for example in microelectronics, biology, forensics and archaeology. Thus, this book not only introduces these important new branches of Raman spectroscopy from both a theoretical and practical view point, but the resulting effects are fully explored and relevant representative models of Raman spectra are described in-depth with the inclusion of theoretical calculations, when appropriate.
Publisher: John Wiley & Sons
ISBN: 1119966787
Category : Science
Languages : en
Pages : 519
Book Description
Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nanotubes, quantum wells, silicon nanowires, etc., it is fast becoming one of the most powerful and sensitive experimental techniques to characterize the qualities of such nanostructures. Recent scientific and technological developments have resulted in the applications of Raman spectroscopy to expand. These developments are vital in providing information for a very broad field of applications: for example in microelectronics, biology, forensics and archaeology. Thus, this book not only introduces these important new branches of Raman spectroscopy from both a theoretical and practical view point, but the resulting effects are fully explored and relevant representative models of Raman spectra are described in-depth with the inclusion of theoretical calculations, when appropriate.
Semiconductors for Micro- and Nanotechnology
Author: Jan G. Korvink
Publisher: Wiley-VCH
ISBN:
Category : Technology & Engineering
Languages : de
Pages : 348
Book Description
Semiconductors play a major role in modern microtechnology, especially in microelectronics. Since the dimensions of new microelectronic components, e.g. computer chips, now reach nanometer size, semiconductor research moves from microtechnology to nanotechnology. An understanding of the semiconductor physics involved in this new technology is of great importance for every student in engineering, especially electrical engineering, microsystem technology and physics. This textbook emphasizes a system-oriented view of semiconductor physics for applications in microsystem technology. While existing books only cover electronic device physics and are mainly written for physics students, this text gives a more hands-on approach to semiconductor physics and so avoids overloading engineering students with mathematical formulas not essential for their studies.
Publisher: Wiley-VCH
ISBN:
Category : Technology & Engineering
Languages : de
Pages : 348
Book Description
Semiconductors play a major role in modern microtechnology, especially in microelectronics. Since the dimensions of new microelectronic components, e.g. computer chips, now reach nanometer size, semiconductor research moves from microtechnology to nanotechnology. An understanding of the semiconductor physics involved in this new technology is of great importance for every student in engineering, especially electrical engineering, microsystem technology and physics. This textbook emphasizes a system-oriented view of semiconductor physics for applications in microsystem technology. While existing books only cover electronic device physics and are mainly written for physics students, this text gives a more hands-on approach to semiconductor physics and so avoids overloading engineering students with mathematical formulas not essential for their studies.
Nanostructured Semiconductors
Author: Serge Zhuiykov
Publisher: Woodhead Publishing
ISBN: 0081019203
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
Nanostructured Semiconductors focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors. Semiconductor oxides are used in electronics, optics, catalysts, sensors, and other functional devices. In their 2D form, the reduction in size confers exceptional properties, useful for creating faster electronics and more efficient catalysts. Since the first edition of the book, there has been significant progress in the development of new functional nanomaterials with unique and sometimes unpredictable quantum-confined properties within the class what it called two-dimensional (2D) semiconductors. These nanocrystals represent extremely thin nano-structures with thickness of just few nano-meters. Since that time, not only were 2D semiconductor oxides further developed, more importantly, 2D metal dichalcogenides, such as MoS2, MoSe2, WS2, WSe2 and others also progressed significantly in their development demonstrating their superior properties compared to their bulk and microstructural counterparts. The book has been expanded to include these advancements. The book begins with the structure and properties of semiconductor nanocrystals (chapter 1), addresses electronic device applications (chapter 2), discusses 2-Dimensional oxides and dichalcogenide semiconductors (chapters 3 through 5), and ends with energy, environment, and bio applications (chapters 6 through 8). - Focuses on the development of semiconductor nanocrystals and their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells and chemical sensors - Include other 2D materials, such as dichalcogenides to present a comprehensive resource on the latest advancements in nanostructured semiconductors - Reviews the fundamental physics of conductivity and electron arrangement before proceeding to practical applications - Contains a unique chapter dedicated to the new atomic layer deposition (ALD) technique which has the ability to develop 2D nanostructures with great precision
Publisher: Woodhead Publishing
ISBN: 0081019203
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
Nanostructured Semiconductors focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors. Semiconductor oxides are used in electronics, optics, catalysts, sensors, and other functional devices. In their 2D form, the reduction in size confers exceptional properties, useful for creating faster electronics and more efficient catalysts. Since the first edition of the book, there has been significant progress in the development of new functional nanomaterials with unique and sometimes unpredictable quantum-confined properties within the class what it called two-dimensional (2D) semiconductors. These nanocrystals represent extremely thin nano-structures with thickness of just few nano-meters. Since that time, not only were 2D semiconductor oxides further developed, more importantly, 2D metal dichalcogenides, such as MoS2, MoSe2, WS2, WSe2 and others also progressed significantly in their development demonstrating their superior properties compared to their bulk and microstructural counterparts. The book has been expanded to include these advancements. The book begins with the structure and properties of semiconductor nanocrystals (chapter 1), addresses electronic device applications (chapter 2), discusses 2-Dimensional oxides and dichalcogenide semiconductors (chapters 3 through 5), and ends with energy, environment, and bio applications (chapters 6 through 8). - Focuses on the development of semiconductor nanocrystals and their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells and chemical sensors - Include other 2D materials, such as dichalcogenides to present a comprehensive resource on the latest advancements in nanostructured semiconductors - Reviews the fundamental physics of conductivity and electron arrangement before proceeding to practical applications - Contains a unique chapter dedicated to the new atomic layer deposition (ALD) technique which has the ability to develop 2D nanostructures with great precision
Optical Properties of Semiconductor Nanocrystals
Author: S. V. Gaponenko
Publisher: Cambridge University Press
ISBN: 0521582415
Category : Science
Languages : en
Pages : 263
Book Description
Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 0521582415
Category : Science
Languages : en
Pages : 263
Book Description
Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.