Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits

Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits PDF Author: Nicholas Andrew Wasley
Publisher: Springer Science & Business Media
ISBN: 3319015141
Category : Technology & Engineering
Languages : en
Pages : 139

Get Book Here

Book Description
This thesis breaks new ground in the physics of photonic circuits for quantum optical applications. The photonic circuits are based either on ridge waveguides or photonic crystals, with embedded quantum dots providing the single qubit, quantum optical emitters. The highlight of the thesis is the first demonstration of a spin-photon interface using an all-waveguide geometry, a vital component of a quantum optical circuit, based on deterministic single photon emission from a single quantum dot. The work makes a further important contribution to the field by demonstrating the effects and limitations that inevitable disorder places on photon propagation in photonic crystal waveguides, a further key component of quantum optical circuits. Overall the thesis offers a number of highly novel contributions to the field; those on chip circuits may prove to be the only means of scaling up the highly promising quantum-dot-based quantum information technology.

Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits

Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits PDF Author: Nicholas Andrew Wasley
Publisher: Springer Science & Business Media
ISBN: 3319015141
Category : Technology & Engineering
Languages : en
Pages : 139

Get Book Here

Book Description
This thesis breaks new ground in the physics of photonic circuits for quantum optical applications. The photonic circuits are based either on ridge waveguides or photonic crystals, with embedded quantum dots providing the single qubit, quantum optical emitters. The highlight of the thesis is the first demonstration of a spin-photon interface using an all-waveguide geometry, a vital component of a quantum optical circuit, based on deterministic single photon emission from a single quantum dot. The work makes a further important contribution to the field by demonstrating the effects and limitations that inevitable disorder places on photon propagation in photonic crystal waveguides, a further key component of quantum optical circuits. Overall the thesis offers a number of highly novel contributions to the field; those on chip circuits may prove to be the only means of scaling up the highly promising quantum-dot-based quantum information technology.

Nano-Photonics in III-V Semiconductors for Integrated Quantum Optical Circuits

Nano-Photonics in III-V Semiconductors for Integrated Quantum Optical Circuits PDF Author: Nicholas Andrew Wasley
Publisher:
ISBN: 9783319015156
Category :
Languages : en
Pages : 148

Get Book Here

Book Description
This thesis describes the optical spectroscopic measurements of III-V semiconductors used to investigate a number of issues related to the development of integrated quantum optical circuits. The disorder-limited propagation of photons in photonic crystal waveguides in the slow-light regime is investigated. The analysis of Fabry-Perot resonances is used to map the mode dispersion and extract the photon localisation length. Andersonlocalised modes are observed at high group indices, when the localisation lengths are shorter than the waveguide lengths, consistent with the Fabry-Perot analysis. A spin-photon interface based on two orthogonal waveguides is introduced, where the polarisation emitted by a quantum dot is mapped to a path-encoded photon. Operation is demonstrated by deducing the spin using the interference of in-plane photons. A second device directly maps right and left circular polarisations to anti-parallel waveguides, surprising for a non-chiral structure but consistent with an off-centre dot. Two dimensional photonic crystal cavities in GaInP and full control over the spontaneous emission rate of InP quantum dots is demonstrated by spectrally tuning the exciton emission energy into resonance with the fundamental cavity mode. Fourier transform spectroscopy is used to investigate the short coherence times of InP quantum dots in GaInP photonic crystal cavities. Additional technological developments are also presented including a quantum dot registration technique, electrical tuning of quantum dot emission and uniaxial strain tuning of H1 cavity modes.

Superconducting Devices in Quantum Optics

Superconducting Devices in Quantum Optics PDF Author: Robert Hadfield
Publisher: Springer
ISBN: 3319240919
Category : Computers
Languages : en
Pages : 256

Get Book Here

Book Description
This book presents the basics and applications of superconducting devices in quantum optics. Over the past decade, superconducting devices have risen to prominence in the arena of quantum optics and quantum information processing. Superconducting detectors provide unparalleled performance for the detection of infrared photons in quantum cryptography, enable fundamental advances in quantum optics, and provide a direct route to on-chip optical quantum information processing. Superconducting circuits based on Josephson junctions provide a blueprint for scalable quantum information processing as well as opening up a new regime for quantum optics at microwave wavelengths. The new field of quantum acoustics allows the state of a superconducting qubit to be transmitted as a phonon excitation. This volume, edited by two leading researchers, provides a timely compilation of contributions from top groups worldwide across this dynamic field, anticipating future advances in this domain.

Quantum Dots for Quantum Information Technologies

Quantum Dots for Quantum Information Technologies PDF Author: Peter Michler
Publisher: Springer
ISBN: 3319563785
Category : Science
Languages : en
Pages : 457

Get Book Here

Book Description
This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

Future Directions in Silicon Photonics

Future Directions in Silicon Photonics PDF Author:
Publisher: Academic Press
ISBN: 0128205180
Category : Science
Languages : en
Pages : 386

Get Book Here

Book Description
Future Directions in Silicon Photonics, Volume 101 in the Semiconductors and Semimetals series, highlights new advances in the field, with this updated volume presenting the latest developments as discussed by esteemed leaders in the field silicon photonics. Provides the authority and expertise of leading contributors from an international board of authors Represents the latest release in the Semiconductors and Semimetals series Includes the latest information on Silicon Photonics

Nanotechnology for Microelectronics and Photonics

Nanotechnology for Microelectronics and Photonics PDF Author: Raúl José Martín-Palma
Publisher: Elsevier
ISBN: 0081011016
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book Here

Book Description
Nanotechnology for Microelectronics and Photonics, Second Edition has been thoroughly revised, expanded, and updated. The aim of the book is to present the most recent advances in the field of nanomaterials, as well as the devices being developed for novel nanoelectronics and nanophotonic systems. It covers the many novel nanoscale applications in microelectronics and photonics that have been developed in recent years. Looking to the future, the book suggests what other applications are currently in development and may become feasible within the next few decades based on novel materials such as graphene, nanotubes, and organic semiconductors. In addition, the inclusion of new chapters and new sections to keep up with the latest developments in this rapidly-evolving field makes Nanotechnology for Microelectronics and Photonics, Second Edition an invaluable reference to research and industrial scientists looking for a guide on how nanostructured materials and nanoscale devices are used in microelectronics, optoelectronics, and photonics today and in future developments. - Presents the fundamental scientific principles that explain the novel properties and applications of nanostructured materials in the quantum frontier - Offers clear and concise coverage of how nanotechnology is currently used in the areas of microelectronics, optoelectronics, and photonics, as well as future proposed devices - Includes nearly a hundred problems along with helpful hints and full solutions for more than half of them

The 25th European Conference on Integrated Optics

The 25th European Conference on Integrated Optics PDF Author: Jeremy Witzens
Publisher: Springer Nature
ISBN: 3031633784
Category :
Languages : en
Pages : 598

Get Book Here

Book Description


Semiconductor Nanophotonics

Semiconductor Nanophotonics PDF Author: Prasanta Kumar Basu
Publisher: Oxford University Press
ISBN: 0191087629
Category : Science
Languages : en
Pages : 496

Get Book Here

Book Description
Nanometre sized structures made of semiconductors, insulators, and metals and grown by modern growth technologies or by chemical synthesis exhibit novel electronic and optical phenomena due to the confinement of electrons and photons. Strong interactions between electrons and photons in narrow regions lead to inhibited spontaneous emission, thresholdless laser operation, and Bose-Einstein condensation of exciton-polaritons in microcavities. Generation of sub-wavelength radiation by surface plasmon-polaritons at metal-semiconductor interfaces, creation of photonic band gaps in dielectrics, and realization of nanometer sized semiconductor or insulator structures with negative permittivity and permeability, known as metamaterials, are further examples in the area of Nanophotonics. The studies help develop spasers and plasmonic nanolasers of subwavelength dimensions, paving the way to use plasmonics in future data centres and high-speed computers working at THz bandwidth with less than a few fJ/bit dissipation. The present book is aimed at graduate students and researchers providing them with an introductory textbook on Semiconductor Nanophotonics. It gives an introduction to electron-photon interactions in Quantum Wells, Wires, and Dots and then discusses the processes in microcavities, photonic band gap materials, metamaterials, and related applications. The phenomena and device applications under strong light-matter interactions are discussed, mostly by using classical and semi-classical theories. Numerous examples and problems accompany each chapter.

On-Chip Photonics

On-Chip Photonics PDF Author: Alina Karabchevsky
Publisher: Elsevier
ISBN: 0323972039
Category : Technology & Engineering
Languages : en
Pages : 500

Get Book Here

Book Description
On-Chip Photonics: Principles, Technology and Applications reviews advances in integrated photonic devices and their demonstrated applications, including ultrafast high-power lasers on a chip, mid-infrared and overtone spectroscopies, all-optical processing on a chip, logic gates on a chip, and cryptography on a chip. The summaries in the book's chapters facilitate an understanding of the field and enable the application of optical waveguides in a variety of optical systems. The ultimate goal of this work is aimed at accelerating the transition of on-chip photonics from academia to the industry. Each chapter, where appropriate, provides an overview of the computational tools, fabrication methods, and suggestions for the realization of on-chip photonic devices. - Introduces advanced concepts of passive and active on-chip photonic components - Discusses emerging applications of on-chip photonics, quantum technologies, computing, and more - Reviews materials, computational tools, and suggestions for the realization of on-chip photonic devices

Photonic Quantum Technologies

Photonic Quantum Technologies PDF Author: Mohamed Benyoucef
Publisher: John Wiley & Sons
ISBN: 3527837434
Category : Science
Languages : en
Pages : 910

Get Book Here

Book Description
Photonic Quantum Technologies Brings together top-level research results to enable the development of practical quantum devices In Photonic Quantum Technologies: Science and Applications, the editor Mohamed Benyoucef and a team of distinguished scientists from different disciplines deliver an authoritative, one-stop overview of up-to-date research on various quantum systems. This unique book reviews the state-of-the-art research in photonic quantum technologies and bridges the fundamentals of the field with applications to provide readers from academia and industry, in one-location resource, with cutting-edge knowledge they need to have to understand and develop practical quantum systems for application in e.g., secure quantum communication, quantum metrology, and quantum computing. The book also addresses fundamental and engineering challenges en route to workable quantum devices and ways to circumvent or overcome them. Readers will also find: A thorough introduction to the fundamentals of quantum technologies, including discussions of the second quantum revolution (by Nobel Laureate Alain Aspect), solid-state quantum optics, and non-classical light and quantum entanglement Comprehensive explorations of emerging quantum technologies and their practical applications, including quantum repeaters, satellite-based quantum communication, quantum networks, silicon quantum photonics, integrated quantum systems, and future vision Practical discussions of quantum technologies with artificial atoms, color centers, 2D materials, molecules, atoms, ions, and optical clocks Perfect for molecular and solid-state physicists, Photonic Quantum Technologies: Science and Applications will also benefit industrial and academic researchers in photonics and quantum optics, graduate students in the field; engineers, chemists, and computer and material scientists.