Multimetallic Nanoparticles for Fuel Cell Electrocatalysts

Multimetallic Nanoparticles for Fuel Cell Electrocatalysts PDF Author: Mark Dreibelbis
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
As part of collaborative efforts to develop new materials for use in polymer electrolyte membrane fuel cells, techniques for the high throughput synthesis and evaluation of thin films have been developed. These studies have revealed several multimetallic systems (both disordered alloys and ordered intermetallics) that are potential candidates for improved anode and cathode electrocatalysts. However, if those complex metallic materials are to be used as fuel cell electrocatalysts, they must be prepared as high surface area nanoparticles, typically as small as 3 to 5 nm in diameter. This dissertation describes efforts to understand intermetallic nanoparticle formation, and an example of preparing one of those promising thin film compositions as nanoparticles. Intermetallic PtPb is known to be an active anode electrocatalyst for formic acid oxidation and is much less sensitive to poisoning by CO and sulfur-containing compounds than the typical Pt catalyst. Solution-phase synthesis of this compound from organometallic precursors co-reduced via sodium naphthalide has produced nanoparticles that retain this activity, and varying reaction conditions provides insight as to how they form. Hydrocarbon adsorption is shown to be a likely inhibitor of intermetallic nanoparticle formation. Single- and double-potential step chronoamperometry methods are also used to investigate the first step of this synthesis- the rates at which the metal precursors are reduced and dissociate in solution. Under the assumptions of the electroanalytical measurements, the coreduced precursors do appear to reduce near the same rate. A promising thin film composition for oxygen reduction is palladium alloyed with tungsten and vanadium. Results are shown for the synthesis of ternary alloys near the composition Pd0.88W0.6V0.06 as nanoparticles which retain some of their oxygen reduction activity from that of the initial thin film used in the screening protocols. Powder x-ray diffraction (pXRD), electron microscopy (SEM and TEM), energy dispersive x-ray spectroscopy (EDS), and rotating disk electrode (RDE) experiments serve as the primary means of characterizing these nanoparticle catalysts.

Multimetallic Nanoparticles for Fuel Cell Electrocatalysts

Multimetallic Nanoparticles for Fuel Cell Electrocatalysts PDF Author: Mark Dreibelbis
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
As part of collaborative efforts to develop new materials for use in polymer electrolyte membrane fuel cells, techniques for the high throughput synthesis and evaluation of thin films have been developed. These studies have revealed several multimetallic systems (both disordered alloys and ordered intermetallics) that are potential candidates for improved anode and cathode electrocatalysts. However, if those complex metallic materials are to be used as fuel cell electrocatalysts, they must be prepared as high surface area nanoparticles, typically as small as 3 to 5 nm in diameter. This dissertation describes efforts to understand intermetallic nanoparticle formation, and an example of preparing one of those promising thin film compositions as nanoparticles. Intermetallic PtPb is known to be an active anode electrocatalyst for formic acid oxidation and is much less sensitive to poisoning by CO and sulfur-containing compounds than the typical Pt catalyst. Solution-phase synthesis of this compound from organometallic precursors co-reduced via sodium naphthalide has produced nanoparticles that retain this activity, and varying reaction conditions provides insight as to how they form. Hydrocarbon adsorption is shown to be a likely inhibitor of intermetallic nanoparticle formation. Single- and double-potential step chronoamperometry methods are also used to investigate the first step of this synthesis- the rates at which the metal precursors are reduced and dissociate in solution. Under the assumptions of the electroanalytical measurements, the coreduced precursors do appear to reduce near the same rate. A promising thin film composition for oxygen reduction is palladium alloyed with tungsten and vanadium. Results are shown for the synthesis of ternary alloys near the composition Pd0.88W0.6V0.06 as nanoparticles which retain some of their oxygen reduction activity from that of the initial thin film used in the screening protocols. Powder x-ray diffraction (pXRD), electron microscopy (SEM and TEM), energy dispersive x-ray spectroscopy (EDS), and rotating disk electrode (RDE) experiments serve as the primary means of characterizing these nanoparticle catalysts.

Nanomaterials for Fuel Cell Catalysis

Nanomaterials for Fuel Cell Catalysis PDF Author: Kenneth I. Ozoemena
Publisher: Springer
ISBN: 3319299301
Category : Science
Languages : en
Pages : 583

Get Book Here

Book Description
Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art in the design, preparation, and engineering of nanoscale functional materials as effective catalysts for fuel cell chemistry, highlights recent progress in electrocatalysis at both fuel cell anode and cathode, and details perspectives and challenges in future research.

Nanotechnology in Electrocatalysis for Energy

Nanotechnology in Electrocatalysis for Energy PDF Author: Alessandro Lavacchi
Publisher: Springer Science & Business Media
ISBN: 1489980598
Category : Technology & Engineering
Languages : en
Pages : 334

Get Book Here

Book Description
This book focuses on nanotechnology in electrocatalysis for energy applications. In particular the book covers nanostructured electrocatalysts for low temperature fuel cells, low temperature electrolyzers and electrochemical valorization. The function of this book is to provide an introduction to basic principles of electrocatalysis, together with a review of the main classes of materials and electrode architectures. This book will illustrate the basic ideas behind material design and provide an introductory sketch of current research focuses. The easy-to-follow three part book focuses on major formulas, concepts and philosophies. This book is ideal for professionals and researchers interested in the field of electrochemistry, renewable energy and electrocatalysis.

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries PDF Author: Teko Napporn
Publisher: Elsevier
ISBN: 0128184973
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications

Nanostructured and Advanced Materials for Fuel Cells

Nanostructured and Advanced Materials for Fuel Cells PDF Author: San Ping Jiang
Publisher: CRC Press
ISBN: 1466512539
Category : Science
Languages : en
Pages : 584

Get Book Here

Book Description
Boasting chapters written by leading international experts, Nanostructured and Advanced Materials for Fuel Cells provides an overview of the progress that has been made so far in the material and catalyst development for fuel cells. The book covers the most recent developments detailing all aspects of synthesis, characterization, and performance.It

Nanomaterials for Direct Alcohol Fuel Cells

Nanomaterials for Direct Alcohol Fuel Cells PDF Author: Fatih Şen
Publisher: Elsevier
ISBN: 0128217146
Category : Technology & Engineering
Languages : en
Pages : 556

Get Book Here

Book Description
Nanomaterials for Direct Alcohol Fuel Cells explains nanomaterials and nanocomposites as well as the characterization, manufacturing, and design of alcohol fuel cell applications. The advantages of direct alcohol fuel cells (DAFCs) are significant for reliable and long-lasting portable power sources used in devices such as mobile phones and computers. Even though substantial improvements have been made in DAFC systems over the last decade, more effort is needed to commercialize DAFCs by producing durable, low-cost, and smaller-sized devices. Nanomaterials have an important role to play in achieving this aim. The use of nanotechnology in DAFCs is vital due to their role in the synthesis of nanocatalysts within the manufacturing process. Lately, nanocatalysts containing carbon such as graphene, carbon nanotubes, and carbon nanocoils have also attracted much attention. When compared to traditional materials, carbon-based materials have unique advantages, such as high corrosion resistance, better electrical conductivity, and less catalyst poisoning. This book also covers different aspects of nanocomposites fabrication, including their preparation, design, and characterization techniques for their fuel cell applications. This book is an important reference source for materials scientists, engineers, energy scientists, and electrochemists who are seeking to improve their understanding of how nanomaterials are being used to enhance the efficiency and lower the cost of DAFCs. - Shows how nanomaterials are being used for the design and manufacture of DAFCs - Explores how nanotechnology is being used to enhance the synthesis and catalysis processes to create the next generation of fuel cells - Assesses the major challenges of producing nanomaterial-based DAFCs on an industrial scale

Nanomaterials for Alcohol Fuel Cells

Nanomaterials for Alcohol Fuel Cells PDF Author: Inamuddin
Publisher: Materials Research Forum LLC
ISBN: 164490019X
Category : Technology & Engineering
Languages : en
Pages : 399

Get Book Here

Book Description
Alcohol fuel cells are very attractive as power sources for mobile and portable applications. As they convert the chemical energy of fuels into electricity, much recent research is directed at developing suitable and efficient catalysts for the process. The present book focuses on pertinent types of nanomaterial-based catalysts, membranes and supports.

One-dimensional Nanostructures for PEM Fuel Cell Applications

One-dimensional Nanostructures for PEM Fuel Cell Applications PDF Author: Shangfeng Du
Publisher: Academic Press
ISBN: 0128111135
Category : Technology & Engineering
Languages : en
Pages : 97

Get Book Here

Book Description
One-dimensional Nanostructures for PEM Fuel Cell Applications provides a review of the progress made in 1D catalysts for applications in polymer electrolyte fuel cells. It highlights the improved understanding of catalytic mechanisms on 1D nanostructures and the new approaches developed for practical applications, also including a critical perspective on current research limits. The book serves as a reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use that have the potential to decarbonize the domestic heat and transport sectors. In addition, a further commercialization of this technology requires advanced catalysts to address major obstacles faced by the commonly used Pt/C nanoparticles. The unique structure of one-dimensional nanostructures give them advantages to overcome some drawbacks of Pt/C nanoparticles as a new type of excellent catalysts for fuel cell reactions. In recent years, great efforts have been devoted in this area, and much progress has been achieved. Provides a review of 1D catalysts for applications in polymer electrolyte fuel cells Presents an ideal reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use Highlights the progress made in recent years in this emerging field

Nanostructured Materials for Next-Generation Energy Storage and Conversion

Nanostructured Materials for Next-Generation Energy Storage and Conversion PDF Author: Fan Li
Publisher: Springer
ISBN: 3662563649
Category : Technology & Engineering
Languages : en
Pages : 593

Get Book Here

Book Description
The energy crisis and pollution have posed significant risks to the environment, transportation, and economy over the last century. Thus, green energy becomes one of the critical global technologies and the use of nanomaterials in these technologies is an important and active research area. This book series presents the progress and opportunities in green energy sustainability. Developments in nanoscaled electrocatalysts, solid oxide and proton exchange membrane fuel cells, lithium ion batteries, and photovoltaic techniques comprise the area of energy storage and conversion. Developments in carbon dioxide (CO2) capture and hydrogen (H2) storage using tunable structured materials are discussed. Design and characterization of new nanoscaled materials with controllable particle size, structure, shape, porosity and band gap to enhance next generation energy systems are also included. The technical topics covered in this series are metal organic frameworks, nanoparticles, nanocomposites, proton exchange membrane fuel cell catalysts, solid oxide fuel cell electrode design, trapping of carbon dioxide, and hydrogen gas storage.

Nanotechnology in Fuel Cells

Nanotechnology in Fuel Cells PDF Author: Huaihe Song
Publisher: Elsevier
ISBN: 0323897916
Category : Technology & Engineering
Languages : en
Pages : 473

Get Book Here

Book Description
Nanotechnology in Fuel Cells focuses on the use of nanotechnology in macroscopic and nanosized fuel cells to enhance their performance and lifespan. The book covers the fundamental design concepts and promising applications of nanotechnology-enhanced fuel cells and their advantages over traditional fuel cells in portable devices, including longer shelf life and lower cost. In the case of proton-exchange membrane fuel cells (PEMFCs), nano-membranes could provide 100 times higher conductivity of hydrogen ions in low humidity conditions than traditional membranes. For hydrogen fuel cell, nanocatalysts (Pt hybrid nanoparticles) could provide 12 times higher catalytic activity. This is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient macro- and nanosized fuel cells. - Outlines how fuel cells can be nanoengineered to enhance their performance and lifespan - Covers a variety of fuel cell types, including proton-exchange membrane fuel cells and hydrogen-based fuel cells - Assesses the major challenges of nanoengineering fuel cells at an industrial scale