Multi-Scale Dynamics Modeling of Brain Physiological Functions and Pathological Mechanisms

Multi-Scale Dynamics Modeling of Brain Physiological Functions and Pathological Mechanisms PDF Author: Ying Wu
Publisher: Frontiers Media SA
ISBN: 2832535569
Category : Science
Languages : en
Pages : 120

Get Book Here

Book Description
The mechanisms of brain physiological functions and pathological mechanisms are crucial for us to understand how the brain works in the normal function such as memory, information processing and attentional perception, or in pathological conditions such as epilepsy, Parkinson's disease, and Alzheimer's diseases. These brain physiological functions and pathological mechanisms generally involve multiple spatial scales of brains, ranging from micro molecules, cellular channels, and meso-scale neuronal networks to the brain regions. To comprehensively understand the neural mechanisms of brain physiological functions and pathological mechanisms, multiple-scale investigations are essential to carry, involving neuronal circuit modeling, neural field modeling, large-scale modeling, data-driven complex network modeling, etc.

Multi-Scale Dynamics Modeling of Brain Physiological Functions and Pathological Mechanisms

Multi-Scale Dynamics Modeling of Brain Physiological Functions and Pathological Mechanisms PDF Author: Ying Wu
Publisher: Frontiers Media SA
ISBN: 2832535569
Category : Science
Languages : en
Pages : 120

Get Book Here

Book Description
The mechanisms of brain physiological functions and pathological mechanisms are crucial for us to understand how the brain works in the normal function such as memory, information processing and attentional perception, or in pathological conditions such as epilepsy, Parkinson's disease, and Alzheimer's diseases. These brain physiological functions and pathological mechanisms generally involve multiple spatial scales of brains, ranging from micro molecules, cellular channels, and meso-scale neuronal networks to the brain regions. To comprehensively understand the neural mechanisms of brain physiological functions and pathological mechanisms, multiple-scale investigations are essential to carry, involving neuronal circuit modeling, neural field modeling, large-scale modeling, data-driven complex network modeling, etc.

Multiscale Models of Brain Disorders

Multiscale Models of Brain Disorders PDF Author: Vassilis Cutsuridis
Publisher: Springer Nature
ISBN: 3030188302
Category : Medical
Languages : en
Pages : 223

Get Book Here

Book Description
This book focuses on our current understanding of brain dynamics in various brain disorders (e.g. epilepsy, Alzheimer’s and Parkinson’s disease) and how the multi-scale, multi-level tools of computational neuroscience can enhance this understanding. In recent years, there have been significant advances in the study of the dynamics of the disordered brain at both the microscopic and the macroscopic levels. This understanding can be furthered by the application of multi-scale computational models as integrative principles that may link single neuron dynamics and the dynamics of local and distant brain regions observed using human EEG, ERPs, MEG, LFPs and fMRI. Focusing on the computational models that are used to study movement, memory and cognitive disorders as well as epilepsy and consciousness related diseases, the book brings together physiologists and anatomists investigating cortical circuits; cognitive neuroscientists studying brain dynamics and behavior by means of EEG and functional magnetic resonance imaging (fMRI); and computational neuroscientists using neural modeling techniques to explore local and large-scale disordered brain dynamics. Covering topics that have a significant impact on the field of medicine, neuroscience and computer science, the book appeals to a diverse group of investigators.

Motor Cortex Microcircuits (Frontiers in Brain Microcircuits Series)

Motor Cortex Microcircuits (Frontiers in Brain Microcircuits Series) PDF Author: Michael Brecht
Publisher: Frontiers E-books
ISBN: 2889193896
Category : Brain
Languages : en
Pages : 134

Get Book Here

Book Description
How does the motor cortex enable mammals to generate accurate, complex, and purposeful movements? A cubic millimeter of motor cortex contains roughly ̃10̂5 cells, an amazing ̃4 Km of axons and ̃0.4 Km of dendrites, somehow wired together with ̃10̂9 synapses. Corticospinal neurons (a.k.a. Betz cells, upper motor neurons) are a key cell type, monosynaptically conveying the output of the cortical circuit to the spinal cord circuits and lower motor neurons. But corticospinal neurons are greatly outnumbered by all the other kinds of neurons in motor cortex, which presumably also contribute crucially to the computational operations carried out for planning, executing, and guiding actions. Determining the wiring patterns, the dynamics of signaling, and how these relate to movement at the level of specific excitatory and inhibitory cell types is critically important for a mechanistic understanding of the input-output organization of motor cortex. While there is a predictive microcircuit hypothesis that relates motor learning to the operation of the cerebellar cortex, we lack such a microcircuit understanding in motor cortex and we consider microcircuits as a central research topic in the field. This Research Topic covers any issues relating to the microcircuit-level analysis of motor cortex. Contributions are welcomed from neuroscientists at all levels of investigation, from in vivo physiology and imaging in humans and monkeys, to rodent models, in vitro anatomy, electrophysiology, electroanatomy, cellular imaging, molecular biology, disease models, computational modeling, and more.

Multiscale Cancer Modeling

Multiscale Cancer Modeling PDF Author: Thomas S. Deisboeck
Publisher: CRC Press
ISBN: 1439814422
Category : Mathematics
Languages : en
Pages : 492

Get Book Here

Book Description
Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat

Criticality as a signature of healthy neural systems: multi-scale experimental and computational studies

Criticality as a signature of healthy neural systems: multi-scale experimental and computational studies PDF Author: Paolo Massobrio
Publisher: Frontiers Media SA
ISBN: 2889195031
Category : Nervous system
Languages : en
Pages : 140

Get Book Here

Book Description
Since 2003, when spontaneous activity in cortical slices was first found to follow scale-free statistical distributions in size and duration, increasing experimental evidences and theoretical models have been reported in the literature supporting the emergence of evidence of scale invariance in the cortex. Although strongly debated, such results refer to many different in vitro and in vivo preparations (awake monkeys, anesthetized rats and cats, in vitro slices and dissociated cultures), suggesting that power law distributions and scale free correlations are a very general and robust feature of cortical activity that has been conserved across species as specific substrate for information storage, transmission and processing. Equally important is that the features reminiscent of scale invariance and criticality are observed at scale spanning from the level of interacting arrays of neurons all the way up to correlations across the entire brain. Thus, if we accept that the brain operates near a critical point, little is known about the causes and/or consequences of a loss of criticality and its relation with brain diseases (e.g. epilepsy). The study of how pathogenetical mechanisms are related to the critical/non-critical behavior of neuronal networks would likely provide new insights into the cellular and synaptic determinants of the emergence of critical-like dynamics and structures in neural systems. At the same time, the relation between the impaired behavior and the disruption of criticality would help clarify its role in normal brain function. The main objective of this Research Topic is to investigate the emergence/disruption of the emergent critical-like states in healthy/impaired neural systems.

Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience PDF Author: Eugene M. Izhikevich
Publisher: MIT Press
ISBN: 0262514206
Category : Medical
Languages : en
Pages : 459

Get Book Here

Book Description
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms PDF Author: Paul Bogdan
Publisher: Frontiers Media SA
ISBN: 2889635317
Category :
Languages : en
Pages : 180

Get Book Here

Book Description
Widespread chronic diseases (e.g., heart diseases, diabetes and its complications, stroke, cancer, brain diseases) constitute a significant cause of rising healthcare costs and pose a significant burden on quality-of-life for many individuals. Despite the increased need for smart healthcare sensing systems that monitor / measure patients’ body balance, there is no coherent theory that facilitates the modeling of human physiological processes and the design and optimization of future healthcare cyber-physical systems (HCPS). The HCPS are expected to mine the patient’s physiological state based on available continuous sensing, quantify risk indices corresponding to the onset of abnormality, signal the need for critical medical intervention in real-time by communicating patient’s medical information via a network from individual to hospital, and most importantly control (actuate) vital health signals (e.g., cardiac pacing, insulin level, blood pressure) within personalized homeostasis. To prevent health complications, maintain good health and/or avoid fatal conditions calls for a cross-disciplinary approach to HCPS design where recent statistical-physics inspired discoveries done by collaborations between physicists and physicians are shared and enriched by applied mathematicians, control theorists and bioengineers. This critical and urgent multi-disciplinary approach has to unify the current state of knowledge and address the following fundamental challenges: One fundamental challenge is represented by the need to mine and understand the complexity of the structure and dynamics of the physiological systems in healthy homeostasis and associated with a disease (such as diabetes). Along the same lines, we need rigorous mathematical techniques for identifying the interactions between integrated physiologic systems and understanding their role within the overall networking architecture of healthy dynamics. Another fundamental challenge calls for a deeper understanding of stochastic feedback and variability in biological systems and physiological processes, in particular, and for deciphering their implications not only on how to mathematically characterize homeostasis, but also on defining new control strategies that are accounting for intra- and inter-patient specificity – a truly mathematical approach to personalized medicine. Numerous recent studies have demonstrated that heart rate variability, blood glucose, neural signals and other interdependent physiological processes demonstrate fractal and non-stationary characteristics. Exploiting statistical physics concepts, numerous recent research studies demonstrated that healthy human physiological processes exhibit complex critical phenomena with deep implications for how homeostasis should be defined and how control strategies should be developed when prolonged abnormal deviations are observed. In addition, several efforts have tried to connect these fractal characteristics with new optimal control strategies that implemented in medical devices such as pacemakers and artificial pancreas could improve the efficiency of medical therapies and the quality-of-life of patients but neglecting the overall networking architecture of human physiology. Consequently, rigorously analyzing the complexity and dynamics of physiological processes (e.g., blood glucose and its associated implications and interdependencies with other physiological processes) represents a fundamental step towards providing a quantifiable (mathematical) definition of homeostasis in the context of critical phenomena, understanding the onset of chronic diseases, predicting deviations from healthy homeostasis and developing new more efficient medical therapies that carefully account for the physiological complexity, intra- and inter-patient variability, rather than ignoring it. This Research Topic aims to open a synergetic and timely effort between physicians, physicists, applied mathematicians, signal processing, bioengineering and biomedical experts to organize the state of knowledge in mining the complexity of physiological systems and their implications for constructing more accurate mathematical models and designing QoL-aware control strategies implemented in the new generation of HCPS devices. By bringing together multi-disciplinary researchers seeking to understand the many aspects of human physiology and its complexity, we aim at enabling a paradigm shift in designing future medical devices that translates mathematical characteristics in predictable mathematical models quantifying not only the degree of homeostasis, but also providing fundamentally new control strategies within the personalized medicine era.

Multiscale Modeling of Cancer

Multiscale Modeling of Cancer PDF Author: Vittorio Cristini
Publisher: Cambridge University Press
ISBN: 1139491504
Category : Technology & Engineering
Languages : en
Pages : 299

Get Book Here

Book Description
Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.

Methods and applications in vascular physiology: 2021

Methods and applications in vascular physiology: 2021 PDF Author: Ali Dabiri
Publisher: Frontiers Media SA
ISBN: 2832515991
Category : Science
Languages : en
Pages : 130

Get Book Here

Book Description


Neuroinflammation in Stroke

Neuroinflammation in Stroke PDF Author: Ulrich Dirnagl
Publisher: Springer Science & Business Media
ISBN: 3662054264
Category : Medical
Languages : en
Pages : 248

Get Book Here

Book Description
The successful treatment of acute stroke remains one of the major challenges in clinical medicine. Over the last decades, the understanding of stroke pathophysiology has greatly improved, while the therapeutic options in stroke therapy remain very limited. Today, hyperacute mechanisms of damage, such as excitotoxicity, can be discriminated from delayed ones, such as inflammation and apoptosis. Targeting of inflammation has already been successfully applied in various stroke models, but translation into a clinically efficacious strategy has not been achieved so far. In this book, leading experts in basic cerebrovascular research as well as stroke treatment review the current evidence for and against an important role for inflammation in stroke, and explore the potential of treating or modulating inflammation in stroke therapy.