Multi-level Integrated Modeling of Wide Bandgap Semiconductor Devices, Components, Circuits, and Systems for Next Generation Power Electronics

Multi-level Integrated Modeling of Wide Bandgap Semiconductor Devices, Components, Circuits, and Systems for Next Generation Power Electronics PDF Author: Andrew Joseph Sellers
Publisher:
ISBN:
Category : Power electronics
Languages : en
Pages : 0

Get Book Here

Book Description
This dissertation investigates the propagation of information between models of disparate computational complexity and simulation domains with specific focus on the modeling of wide bandgap semiconductors for power electronics applications. First, analytical physics models and technology computer-aided design numerical physics models are presented. These types of physics models are contrasted by ease of generation and computational complexity. Next, processes generating transient simulations from these models are identified. Mixed-mode simulation and behavioral device models are established as two available options. Of these two, behavioral models are identified as the method producing superior computational performance due to their much-reduced simulation time. A comparison of switching performance for two wide bandgap field-effect transistors manufactured with the same process is next presented. Empirical and simulated switching results demonstrate that available models predict the slew rates reasonably well, but fail to accurately capture ringing frequencies. This is attributed to two primary causes; the modeling tool used for this comparison is incapable of producing a sufficiently high-quality fit to ensure accurate prediction and the devices are sensitive to parasitic values beyond the measurement uncertainty of the characterization hardware. To remedy this, a two-fold approach is necessary. First, a new model must be generated which is more capable of predicting steady-state performance. Second, a characterization procedure must be produced which tunes parameters beyond what is possible with empirical characterization. To the first point, a novel model based on the Curtice model is presented. The novel model adapts the Curtice model by adding gate-bias dependence to model parameters and introducing an exponential smoothing function to account for the gradual transition from linear to saturation exhibited by some wide bandgap field-effect transistors. Care is taken to model forward conduction, reverse conduction, and transfer characteristics with high accuracy. Non-linear capacitances are then modeled using a charge-based lookup table demonstrated by previous work in the literature to be effective. Thermal performance is accounted for with both the incorporation of thermal scaling factors and a thermal RC network to account for joule-heating. The proposed model is capable of capturing device steady-state and small-signal performance more precisely than previous models. A tuning and optimization procedure is next presented which is capable of tuning device model parasitic values within uncertainty bounds of characterization data. This method identifies the need for and introduces new model parameters intended to account for dispersive phenomena to a first degree. Pairing this method with the aforementioned model, significant improvements in transient agreement can be achieved for fast-switching devices. A method is also presented which identifies and quantifies the impact of parameters on transient performance. This process can be used to remove model parameters from the tuning set and possibly decouple parameter tuning. The propagation of these fully-tuned device and circuit models to the system level is next discussed. The cases of a buck converter and double pulse test are used as examples of dc switching circuits which may be used for switching characterization and to account for switching losses. Simulation is used to demonstrate that these circuits, when using similar components, produce comparable results. This allows the use of double pulse tests for switching characterization in simulation, thus eliminating the need for quasi-steady-state conditions to be reached in converter simulation. Methods are proposed for the inclusion of this data into system-level models such that simulation time will be minimally impacted. When used in conjunction, the methods presented in this chapter are sufficient to propagate information from the physics level all the way through to the system level. If specific circuits and system components are known, the impact of including a theoretical device can be assessed. This lends itself to advanced design of each type of model by analyzing the interactions predicted by various levels of models. This has serious implications for accelerating the deployment of wide bandgap semiconductor in power electronics by addressing the primary concerns of reliability and ease of implementation. By using these methods, devices, circuits, and systems can each be optimized to fully benefit from the theoretical advantages presented by wide bandgap semiconductor materials.

Multi-level Integrated Modeling of Wide Bandgap Semiconductor Devices, Components, Circuits, and Systems for Next Generation Power Electronics

Multi-level Integrated Modeling of Wide Bandgap Semiconductor Devices, Components, Circuits, and Systems for Next Generation Power Electronics PDF Author: Andrew Joseph Sellers
Publisher:
ISBN:
Category : Power electronics
Languages : en
Pages : 0

Get Book Here

Book Description
This dissertation investigates the propagation of information between models of disparate computational complexity and simulation domains with specific focus on the modeling of wide bandgap semiconductors for power electronics applications. First, analytical physics models and technology computer-aided design numerical physics models are presented. These types of physics models are contrasted by ease of generation and computational complexity. Next, processes generating transient simulations from these models are identified. Mixed-mode simulation and behavioral device models are established as two available options. Of these two, behavioral models are identified as the method producing superior computational performance due to their much-reduced simulation time. A comparison of switching performance for two wide bandgap field-effect transistors manufactured with the same process is next presented. Empirical and simulated switching results demonstrate that available models predict the slew rates reasonably well, but fail to accurately capture ringing frequencies. This is attributed to two primary causes; the modeling tool used for this comparison is incapable of producing a sufficiently high-quality fit to ensure accurate prediction and the devices are sensitive to parasitic values beyond the measurement uncertainty of the characterization hardware. To remedy this, a two-fold approach is necessary. First, a new model must be generated which is more capable of predicting steady-state performance. Second, a characterization procedure must be produced which tunes parameters beyond what is possible with empirical characterization. To the first point, a novel model based on the Curtice model is presented. The novel model adapts the Curtice model by adding gate-bias dependence to model parameters and introducing an exponential smoothing function to account for the gradual transition from linear to saturation exhibited by some wide bandgap field-effect transistors. Care is taken to model forward conduction, reverse conduction, and transfer characteristics with high accuracy. Non-linear capacitances are then modeled using a charge-based lookup table demonstrated by previous work in the literature to be effective. Thermal performance is accounted for with both the incorporation of thermal scaling factors and a thermal RC network to account for joule-heating. The proposed model is capable of capturing device steady-state and small-signal performance more precisely than previous models. A tuning and optimization procedure is next presented which is capable of tuning device model parasitic values within uncertainty bounds of characterization data. This method identifies the need for and introduces new model parameters intended to account for dispersive phenomena to a first degree. Pairing this method with the aforementioned model, significant improvements in transient agreement can be achieved for fast-switching devices. A method is also presented which identifies and quantifies the impact of parameters on transient performance. This process can be used to remove model parameters from the tuning set and possibly decouple parameter tuning. The propagation of these fully-tuned device and circuit models to the system level is next discussed. The cases of a buck converter and double pulse test are used as examples of dc switching circuits which may be used for switching characterization and to account for switching losses. Simulation is used to demonstrate that these circuits, when using similar components, produce comparable results. This allows the use of double pulse tests for switching characterization in simulation, thus eliminating the need for quasi-steady-state conditions to be reached in converter simulation. Methods are proposed for the inclusion of this data into system-level models such that simulation time will be minimally impacted. When used in conjunction, the methods presented in this chapter are sufficient to propagate information from the physics level all the way through to the system level. If specific circuits and system components are known, the impact of including a theoretical device can be assessed. This lends itself to advanced design of each type of model by analyzing the interactions predicted by various levels of models. This has serious implications for accelerating the deployment of wide bandgap semiconductor in power electronics by addressing the primary concerns of reliability and ease of implementation. By using these methods, devices, circuits, and systems can each be optimized to fully benefit from the theoretical advantages presented by wide bandgap semiconductor materials.

Next Generation Integrated Behavioral and Physics-based Modeling of Wide Bandgap Semiconductor Devices for Power Electronics

Next Generation Integrated Behavioral and Physics-based Modeling of Wide Bandgap Semiconductor Devices for Power Electronics PDF Author: Michael Robert Hontz
Publisher:
ISBN:
Category : Semiconductors
Languages : en
Pages : 120

Get Book Here

Book Description
This dissertation investigates the modeling of next generation wide bandgap semiconductors in several domains. The first model developed is of a GaN Schottky diode with a unique AlGaN cap layer. This model is developed using fundamental physical laws and analysis and allows for the characteristics of the diode to be designed by adjusting aspects of the diode's fabrication and structure. The second model is of a lateral GaN HEMT and is developed using TCAD simulation software in order to fit experimental data based on static characteristics. This procedure endeavors to simultaneously fit several output characteristics of the HEMT device to facilitate the applicability and evaluation of the device for power electronics applications. This model is then used to analyze the effects of various substrate material choices on the performance of the GaN HEMT in a switching application. Finally, a link between TCAD models of devices and a circuit simulation platform is demonstrated. This system allows for simulation and testing of devices in complex power electronic systems while maintaining a direct dependence between the system-level performance and the physical parameters of the device. This link between TCAD and circuit simulation is then used to develop an iterative optimization procedure to design a semiconductor device for a particular power electronic application. The work demonstrated here develops procedures to create high-fidelity models of wide bandgap semiconductor devices and enables the purposeful design of devices for their intended application with a high degree of confidence in meeting system requirements. It is through this focusing of device modeling and design, that the rate of technological transfer of next-generation semiconductor devices to power electronics systems can be improved.

Silicon and Beyond

Silicon and Beyond PDF Author: Michael Shur
Publisher: World Scientific
ISBN: 9789810242800
Category : Technology & Engineering
Languages : en
Pages : 196

Get Book Here

Book Description
The steady downscaling of device-feature size combined with a rapid increase in circuit complexity as well as the introduction of new device concepts based on non-silicon-material systems poses great challenges for device and circuit designers. One of the major tasks is the development of new and improved device models needed for accurate device and circuit design. Another task is the development of new circuit-simulation tools to handle very large and complex circuits. This book addresses both these issues with up-to-date reviews written by leading experts in the field. The first three chapters of the book discuss advanced device models both for existing technologies and for new, emerging technologies. Among the topics covered are models for MOSFETs, thin-film transitors (TFTs), and compound semiconductor devices, including GaAs HEMTs and HFETs, heterodimensional devices, quantum-tunneling devices, as well as wide-bandgap devices. Chapters 4 and 5 discuss advanced circuit simulators that hold promise for,handling circuits of much higher complexity than what is possible for typical state-of-the-art circuit simulators today.

Extreme Environment Electronics

Extreme Environment Electronics PDF Author: John D. Cressler
Publisher: CRC Press
ISBN: 1351832808
Category : Technology & Engineering
Languages : en
Pages : 1044

Get Book Here

Book Description
Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.

Characterization of Wide Bandgap Power Semiconductor Devices

Characterization of Wide Bandgap Power Semiconductor Devices PDF Author: Fei Wang
Publisher: Institution of Engineering and Technology
ISBN: 1785614916
Category : Technology & Engineering
Languages : en
Pages : 348

Get Book Here

Book Description
At the heart of modern power electronics converters are power semiconductor switching devices. The emergence of wide bandgap (WBG) semiconductor devices, including silicon carbide and gallium nitride, promises power electronics converters with higher efficiency, smaller size, lighter weight, and lower cost than converters using the established silicon-based devices. However, WBG devices pose new challenges for converter design and require more careful characterization, in particular due to their fast switching speed and more stringent need for protection. Characterization of Wide Bandgap Power Semiconductor Devices presents comprehensive methods with examples for the characterization of this important class of power devices. After an introduction, the book covers pulsed static characterization; junction capacitance characterization; fundamentals of dynamic characterization; gate drive for dynamic characterization; layout design and parasitic management; protection design for double pulse test; measurement and data processing for dynamic characterization; cross-talk consideration; impact of three-phase system; and topology considerations.

Wide Bandgap Semiconductor Power Devices

Wide Bandgap Semiconductor Power Devices PDF Author: B. Jayant Baliga
Publisher: Woodhead Publishing
ISBN: 0081023073
Category : Technology & Engineering
Languages : en
Pages : 418

Get Book Here

Book Description
Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact

Transient Electro-Thermal Modeling on Power Semiconductor Devices

Transient Electro-Thermal Modeling on Power Semiconductor Devices PDF Author: Tanya Kirilova Gachovska
Publisher: Springer Nature
ISBN: 3031025067
Category : Technology & Engineering
Languages : en
Pages : 68

Get Book Here

Book Description
This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusion equation in the lightly doped drift region of the devices. In addition to the external electrical characteristics, internal physical and electrical information, such as junction voltages and carrier distribution in different regions of the device, can be obtained using the models. The instantaneous dissipated power, calculated using the electrical device models, serves as input to the thermal model (RC network with constant and nonconstant thermal resistance and thermal heat capacity, or Fourier thermal model) of the entire module or package, which computes the junction temperature of the device. Once an updated junction temperature is calculated, the temperature-dependent semiconductor material parameters are re-calculated and used with the device electrical model in the next time-step of the simulation. The physics-based electro-thermal models can be used for optimizing device and package design and also for validating extracted parameters of the devices. The thermal model can be used alone for monitoring the junction temperature of a power semiconductor device, and the resulting simulation results used as an indicator of the health and reliability of the semiconductor power device.

On the Stability of Circuits Switched by Wide Band-gap Power Semiconductor Devices

On the Stability of Circuits Switched by Wide Band-gap Power Semiconductor Devices PDF Author:
Publisher:
ISBN:
Category : Oscillations
Languages : en
Pages : 238

Get Book Here

Book Description
The commercialization of wide band-gap devices such as silicon carbide and gallium nitride transistors has made it possible for power electronics applications to achieve unprecedented performance in terms of efficiency and power density. However, the device characteristics which make this performance possible also create secondary consequences in these high-performance applications. One such consequence which is particularly difficult to manage in the context of power electronics applications is the occurrence of self-sustained oscillation. This problem has been recognized in the power electronics literature, but heretofore has not received an extensive analytical treatment. This dissertation provides a comprehensive analytical treatment of the self sustained oscillation phenomenon, logically separated into two components: an initial forced cycle and the subsequent oscillatory behavior. A large-signal model has been developed in order to predict the occurrence of the initial forced cycle based on a set of estimated initial conditions derived from a user-specified operating point. The establishment of the initial forced cycle as predicted by the large-signal model creates the bias conditions necessary for the analytical treatment of the subsequent oscillatory behavior. For this purpose, a small-signal model is presented which describes this phenomenon on the basis of recognizing the wide band-gap device and a minimal set of parasitic components associated with the gate and drain circuits as an unintended negative conductance oscillator. In the context of established oscillator design theory it has been shown both analytically and with simulation that negative differential conductance exhibited by the parasitic model explains the conditions under which selfsustained oscillation is likely to occur. Both the large-signal and small-signal models are shown to demonstrate good agreement with empirical results from pulsed switching experiments obtained over a wide range of operating conditions. In addition, a catalog of known solutions to the problem of self-sustained oscillation is presented, along with a discussion of a method by which the current work can be used by application designers to preclude the occurrence of this phenomenon in practical systems by design.

Wide Bandgap Semiconductor Components Integration in a PCB Substrate for the Development of a High Density Power Electronics Converter

Wide Bandgap Semiconductor Components Integration in a PCB Substrate for the Development of a High Density Power Electronics Converter PDF Author: Shuangfeng Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The emerging wide bandgap (WBG) semiconductor devices have been developed for power conversion applications instead of silicon devices due to higher switching frequencies (from few 100 kHz to several MHz) and lower on-state losses resulting in a better efficiency. In order to take full advantage of the WBG components, PCB technology is attractive for high power density integration thanks to its flexibility and low cost. However, due to poor thermal conductivity of the commonly used material Flame Retardant-4 (FR4), efficient thermal solutions are becoming a challenging issue in integrated power boards based on PCB substrates. So it is of the first importance to seek technological means in order to improve the thermal performances. In this thesis, three main thermal management solutions for PCB structures have been investigated including thermal vias, thick copper thickness on the PCB substrate as well as thermoelectric cooling (TEC) devices. Our studies are based on the electro-thermal modeling and 3D finite element (FE) methods. Firstly, optimization of the thermal via parameters (via diameter, via plating thickness, via-cluster surface, via pattern, pitch distance between vias etc.) has been realized to improve their cooing performances. We presented and evaluated thermal performances of the PCB structures by analyzing the thermal resistance of the PCB substrate with different thermal vias. Secondly, it is found that thermal performances of the PCB structures can be enhanced by using thick copper thickness on top of the PCB substrate, which increases the lateral heat flux along the copper layer. Influences of the copper thickness (35 μm to 500 μm) has been discussed. This solution is easy to realize and can be combined with other cooling solutions. Thirdly, thermoelectric cooler like Peltier device is a solid-state cooling technology that can meet the local cooling requirements. Influences of Peltier parameters (Thermoelectric material properties, number of Peltier elements, distance between the heating source and the Peltier devices etc.) have been identified. All these analyses demonstrate the potential application of Peltier devices placed beside the heating source for PCB structures, which is a benefit for developing the embedding technology in such structures.

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2540

Get Book Here

Book Description