Author: David I. Spivak
Publisher: MIT Press
ISBN: 0262320533
Category : Mathematics
Languages : en
Pages : 495
Book Description
An introduction to category theory as a rigorous, flexible, and coherent modeling language that can be used across the sciences. Category theory was invented in the 1940s to unify and synthesize different areas in mathematics, and it has proven remarkably successful in enabling powerful communication between disparate fields and subfields within mathematics. This book shows that category theory can be useful outside of mathematics as a rigorous, flexible, and coherent modeling language throughout the sciences. Information is inherently dynamic; the same ideas can be organized and reorganized in countless ways, and the ability to translate between such organizational structures is becoming increasingly important in the sciences. Category theory offers a unifying framework for information modeling that can facilitate the translation of knowledge between disciplines. Written in an engaging and straightforward style, and assuming little background in mathematics, the book is rigorous but accessible to non-mathematicians. Using databases as an entry to category theory, it begins with sets and functions, then introduces the reader to notions that are fundamental in mathematics: monoids, groups, orders, and graphs—categories in disguise. After explaining the “big three” concepts of category theory—categories, functors, and natural transformations—the book covers other topics, including limits, colimits, functor categories, sheaves, monads, and operads. The book explains category theory by examples and exercises rather than focusing on theorems and proofs. It includes more than 300 exercises, with solutions. Category Theory for the Sciences is intended to create a bridge between the vast array of mathematical concepts used by mathematicians and the models and frameworks of such scientific disciplines as computation, neuroscience, and physics.
An Introduction to the Language of Category Theory
Author: Steven Roman
Publisher: Birkhäuser
ISBN: 331941917X
Category : Mathematics
Languages : en
Pages : 174
Book Description
This textbook provides an introduction to elementary category theory, with the aim of making what can be a confusing and sometimes overwhelming subject more accessible. In writing about this challenging subject, the author has brought to bear all of the experience he has gained in authoring over 30 books in university-level mathematics. The goal of this book is to present the five major ideas of category theory: categories, functors, natural transformations, universality, and adjoints in as friendly and relaxed a manner as possible while at the same time not sacrificing rigor. These topics are developed in a straightforward, step-by-step manner and are accompanied by numerous examples and exercises, most of which are drawn from abstract algebra. The first chapter of the book introduces the definitions of category and functor and discusses diagrams,duality, initial and terminal objects, special types of morphisms, and some special types of categories,particularly comma categories and hom-set categories. Chapter 2 is devoted to functors and naturaltransformations, concluding with Yoneda's lemma. Chapter 3 presents the concept of universality and Chapter 4 continues this discussion by exploring cones, limits, and the most common categorical constructions – products, equalizers, pullbacks and exponentials (along with their dual constructions). The chapter concludes with a theorem on the existence of limits. Finally, Chapter 5 covers adjoints and adjunctions. Graduate and advanced undergraduates students in mathematics, computer science, physics, or related fields who need to know or use category theory in their work will find An Introduction to Category Theory to be a concise and accessible resource. It will be particularly useful for those looking for a more elementary treatment of the topic before tackling more advanced texts.
Publisher: Birkhäuser
ISBN: 331941917X
Category : Mathematics
Languages : en
Pages : 174
Book Description
This textbook provides an introduction to elementary category theory, with the aim of making what can be a confusing and sometimes overwhelming subject more accessible. In writing about this challenging subject, the author has brought to bear all of the experience he has gained in authoring over 30 books in university-level mathematics. The goal of this book is to present the five major ideas of category theory: categories, functors, natural transformations, universality, and adjoints in as friendly and relaxed a manner as possible while at the same time not sacrificing rigor. These topics are developed in a straightforward, step-by-step manner and are accompanied by numerous examples and exercises, most of which are drawn from abstract algebra. The first chapter of the book introduces the definitions of category and functor and discusses diagrams,duality, initial and terminal objects, special types of morphisms, and some special types of categories,particularly comma categories and hom-set categories. Chapter 2 is devoted to functors and naturaltransformations, concluding with Yoneda's lemma. Chapter 3 presents the concept of universality and Chapter 4 continues this discussion by exploring cones, limits, and the most common categorical constructions – products, equalizers, pullbacks and exponentials (along with their dual constructions). The chapter concludes with a theorem on the existence of limits. Finally, Chapter 5 covers adjoints and adjunctions. Graduate and advanced undergraduates students in mathematics, computer science, physics, or related fields who need to know or use category theory in their work will find An Introduction to Category Theory to be a concise and accessible resource. It will be particularly useful for those looking for a more elementary treatment of the topic before tackling more advanced texts.
Categories and Sheaves
Author: Masaki Kashiwara
Publisher: Springer Science & Business Media
ISBN: 3540279504
Category : Mathematics
Languages : en
Pages : 496
Book Description
Categories and sheaves appear almost frequently in contemporary advanced mathematics. This book covers categories, homological algebra and sheaves in a systematic manner starting from scratch and continuing with full proofs to the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasizing inductive and projective limits, tensor categories, representable functors, ind-objects and localization.
Publisher: Springer Science & Business Media
ISBN: 3540279504
Category : Mathematics
Languages : en
Pages : 496
Book Description
Categories and sheaves appear almost frequently in contemporary advanced mathematics. This book covers categories, homological algebra and sheaves in a systematic manner starting from scratch and continuing with full proofs to the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasizing inductive and projective limits, tensor categories, representable functors, ind-objects and localization.
Categories, Types, and Structures
Author: Andrea Asperti
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 330
Book Description
Category theory is a mathematical subject whose importance in several areas of computer science, most notably the semantics of programming languages and the design of programmes using abstract data types, is widely acknowledged. This book introduces category theory at a level appropriate for computer scientists and provides practical examples in the context of programming language design.
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 330
Book Description
Category theory is a mathematical subject whose importance in several areas of computer science, most notably the semantics of programming languages and the design of programmes using abstract data types, is widely acknowledged. This book introduces category theory at a level appropriate for computer scientists and provides practical examples in the context of programming language design.
Categories for the Working Mathematician
Author: Saunders Mac Lane
Publisher: Springer Science & Business Media
ISBN: 1475747217
Category : Mathematics
Languages : en
Pages : 320
Book Description
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Publisher: Springer Science & Business Media
ISBN: 1475747217
Category : Mathematics
Languages : en
Pages : 320
Book Description
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Category Theory in Context
Author: Emily Riehl
Publisher: Courier Dover Publications
ISBN: 0486820807
Category : Mathematics
Languages : en
Pages : 273
Book Description
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Publisher: Courier Dover Publications
ISBN: 0486820807
Category : Mathematics
Languages : en
Pages : 273
Book Description
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Basic Concepts of Enriched Category Theory
Author: Gregory Maxwell Kelly
Publisher: CUP Archive
ISBN: 9780521287029
Category : Mathematics
Languages : en
Pages : 260
Book Description
Publisher: CUP Archive
ISBN: 9780521287029
Category : Mathematics
Languages : en
Pages : 260
Book Description
Categories in Algebra, Geometry and Mathematical Physics
Author: Alexei Davydov
Publisher: American Mathematical Soc.
ISBN: 0821839705
Category : Mathematics
Languages : en
Pages : 482
Book Description
Category theory has become the universal language of modern mathematics. This book is a collection of articles applying methods of category theory to the areas of algebra, geometry, and mathematical physics. Among others, this book contains articles on higher categories and their applications and on homotopy theoretic methods. The reader can learn about the exciting new interactions of category theory with very traditional mathematical disciplines.
Publisher: American Mathematical Soc.
ISBN: 0821839705
Category : Mathematics
Languages : en
Pages : 482
Book Description
Category theory has become the universal language of modern mathematics. This book is a collection of articles applying methods of category theory to the areas of algebra, geometry, and mathematical physics. Among others, this book contains articles on higher categories and their applications and on homotopy theoretic methods. The reader can learn about the exciting new interactions of category theory with very traditional mathematical disciplines.
Abstract and Concrete Categories
Author: Jiri Adamek
Publisher:
ISBN: 9780486469348
Category : Categories (Mathematics)
Languages : en
Pages : 0
Book Description
This up-to-date introductory treatment employs category theory to explore the theory of structures. Its unique approach stresses concrete categories and presents a systematic view of factorization structures, offering a unifying perspective on earlier work and summarizing recent developments. Numerous examples, ranging from general to specific, illuminate the text. 1990 edition, updated 2004.
Publisher:
ISBN: 9780486469348
Category : Categories (Mathematics)
Languages : en
Pages : 0
Book Description
This up-to-date introductory treatment employs category theory to explore the theory of structures. Its unique approach stresses concrete categories and presents a systematic view of factorization structures, offering a unifying perspective on earlier work and summarizing recent developments. Numerous examples, ranging from general to specific, illuminate the text. 1990 edition, updated 2004.
Elements of ∞-Category Theory
Author: Emily Riehl
Publisher: Cambridge University Press
ISBN: 1108952194
Category : Mathematics
Languages : en
Pages : 782
Book Description
The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.
Publisher: Cambridge University Press
ISBN: 1108952194
Category : Mathematics
Languages : en
Pages : 782
Book Description
The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.
Basic Category Theory
Author: Tom Leinster
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193
Book Description
A short introduction ideal for students learning category theory for the first time.
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193
Book Description
A short introduction ideal for students learning category theory for the first time.