Author: S. M. Natanzon
Publisher: American Mathematical Soc.
ISBN: 9780821889657
Category : Mathematics
Languages : en
Pages : 172
Book Description
The space of all Riemann surfaces (the so-called moduli space) plays an important role in algebraic geometry and its applications to quantum field theory. This book focuses on the study of topological properties of this space and of similar moduli spaces, such as the space of real algebraic curves, and the space of mappings.
Moduli of Riemann Surfaces, Real Algebraic Curves, and Their Superanalogs
Author: S. M. Natanzon
Publisher: American Mathematical Soc.
ISBN: 9780821889657
Category : Mathematics
Languages : en
Pages : 172
Book Description
The space of all Riemann surfaces (the so-called moduli space) plays an important role in algebraic geometry and its applications to quantum field theory. This book focuses on the study of topological properties of this space and of similar moduli spaces, such as the space of real algebraic curves, and the space of mappings.
Publisher: American Mathematical Soc.
ISBN: 9780821889657
Category : Mathematics
Languages : en
Pages : 172
Book Description
The space of all Riemann surfaces (the so-called moduli space) plays an important role in algebraic geometry and its applications to quantum field theory. This book focuses on the study of topological properties of this space and of similar moduli spaces, such as the space of real algebraic curves, and the space of mappings.
Symmetries of Compact Riemann Surfaces
Author: Emilio Bujalance
Publisher: Springer Science & Business Media
ISBN: 3642148271
Category : Mathematics
Languages : en
Pages : 181
Book Description
This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.
Publisher: Springer Science & Business Media
ISBN: 3642148271
Category : Mathematics
Languages : en
Pages : 181
Book Description
This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.
Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional
Author: Enno Keßler
Publisher: Springer Nature
ISBN: 3030137589
Category : Mathematics
Languages : en
Pages : 310
Book Description
This book treats the two-dimensional non-linear supersymmetric sigma model or spinning string from the perspective of supergeometry. The objective is to understand its symmetries as geometric properties of super Riemann surfaces, which are particular complex super manifolds of dimension 1|1. The first part gives an introduction to the super differential geometry of families of super manifolds. Appropriate generalizations of principal bundles, smooth families of complex manifolds and integration theory are developed. The second part studies uniformization, U(1)-structures and connections on Super Riemann surfaces and shows how the latter can be viewed as extensions of Riemann surfaces by a gravitino field. A natural geometric action functional on super Riemann surfaces is shown to reproduce the action functional of the non-linear supersymmetric sigma model using a component field formalism. The conserved currents of this action can be identified as infinitesimal deformations of the super Riemann surface. This is in surprising analogy to the theory of Riemann surfaces and the harmonic action functional on them. This volume is aimed at both theoretical physicists interested in a careful treatment of the subject and mathematicians who want to become acquainted with the potential applications of this beautiful theory.
Publisher: Springer Nature
ISBN: 3030137589
Category : Mathematics
Languages : en
Pages : 310
Book Description
This book treats the two-dimensional non-linear supersymmetric sigma model or spinning string from the perspective of supergeometry. The objective is to understand its symmetries as geometric properties of super Riemann surfaces, which are particular complex super manifolds of dimension 1|1. The first part gives an introduction to the super differential geometry of families of super manifolds. Appropriate generalizations of principal bundles, smooth families of complex manifolds and integration theory are developed. The second part studies uniformization, U(1)-structures and connections on Super Riemann surfaces and shows how the latter can be viewed as extensions of Riemann surfaces by a gravitino field. A natural geometric action functional on super Riemann surfaces is shown to reproduce the action functional of the non-linear supersymmetric sigma model using a component field formalism. The conserved currents of this action can be identified as infinitesimal deformations of the super Riemann surface. This is in surprising analogy to the theory of Riemann surfaces and the harmonic action functional on them. This volume is aimed at both theoretical physicists interested in a careful treatment of the subject and mathematicians who want to become acquainted with the potential applications of this beautiful theory.
Complex Analysis, Riemann Surfaces and Integrable Systems
Author: Sergey M. Natanzon
Publisher: Springer Nature
ISBN: 3030346404
Category : Mathematics
Languages : en
Pages : 148
Book Description
This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided. We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic, and harmonic functions. We then present a uniformization theory, and discuss a representation of the moduli space of Riemann surfaces of a fixed topological type as a factor space of a contracted space by a discrete group. Next, we consider compact Riemann surfaces and prove the classical theorems of Riemann-Roch, Abel, Weierstrass, etc. We also construct theta functions that are very important for a range of applications. After that, we turn to modern applications of this theory. First, we build the (important for mathematics and mathematical physics) Kadomtsev-Petviashvili hierarchy and use validated results to arrive at important solutions to these differential equations. We subsequently use the theory of harmonic functions and the theory of differential hierarchies to explicitly construct a conformal mapping that translates an arbitrary contractible domain into a standard disk – a classical problem that has important applications in hydrodynamics, gas dynamics, etc. The book is based on numerous lecture courses given by the author at the Independent University of Moscow and at the Mathematics Department of the Higher School of Economics.
Publisher: Springer Nature
ISBN: 3030346404
Category : Mathematics
Languages : en
Pages : 148
Book Description
This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided. We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic, and harmonic functions. We then present a uniformization theory, and discuss a representation of the moduli space of Riemann surfaces of a fixed topological type as a factor space of a contracted space by a discrete group. Next, we consider compact Riemann surfaces and prove the classical theorems of Riemann-Roch, Abel, Weierstrass, etc. We also construct theta functions that are very important for a range of applications. After that, we turn to modern applications of this theory. First, we build the (important for mathematics and mathematical physics) Kadomtsev-Petviashvili hierarchy and use validated results to arrive at important solutions to these differential equations. We subsequently use the theory of harmonic functions and the theory of differential hierarchies to explicitly construct a conformal mapping that translates an arbitrary contractible domain into a standard disk – a classical problem that has important applications in hydrodynamics, gas dynamics, etc. The book is based on numerous lecture courses given by the author at the Independent University of Moscow and at the Mathematics Department of the Higher School of Economics.
Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces
Author: Milagros Izquierdo
Publisher: American Mathematical Soc.
ISBN: 1470410931
Category : Mathematics
Languages : en
Pages : 362
Book Description
This volume contains the proceedings of the conference on Riemann and Klein Surfaces, Symmetries and Moduli Spaces, in honor of Emilio Bujalance, held from June 24-28, 2013, at Linköping University. The conference and this volume are devoted to the mathematics that Emilio Bujalance has worked with in the following areas, all with a computational flavor: Riemann and Klein surfaces, automorphisms of real and complex surfaces, group actions on surfaces and topological properties of moduli spaces of complex curves and Abelian varieties.
Publisher: American Mathematical Soc.
ISBN: 1470410931
Category : Mathematics
Languages : en
Pages : 362
Book Description
This volume contains the proceedings of the conference on Riemann and Klein Surfaces, Symmetries and Moduli Spaces, in honor of Emilio Bujalance, held from June 24-28, 2013, at Linköping University. The conference and this volume are devoted to the mathematics that Emilio Bujalance has worked with in the following areas, all with a computational flavor: Riemann and Klein surfaces, automorphisms of real and complex surfaces, group actions on surfaces and topological properties of moduli spaces of complex curves and Abelian varieties.
Extremal Polynomials and Riemann Surfaces
Author: Andrei Bogatyrev
Publisher: Springer Science & Business Media
ISBN: 3642256341
Category : Mathematics
Languages : en
Pages : 173
Book Description
The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev's approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmüller theory, foliations, braids, topology are applied to approximation problems. The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.
Publisher: Springer Science & Business Media
ISBN: 3642256341
Category : Mathematics
Languages : en
Pages : 173
Book Description
The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev's approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmüller theory, foliations, braids, topology are applied to approximation problems. The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.
The British National Bibliography
Author: Arthur James Wells
Publisher:
ISBN:
Category : Bibliography, National
Languages : en
Pages : 1382
Book Description
Publisher:
ISBN:
Category : Bibliography, National
Languages : en
Pages : 1382
Book Description
Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups and Related Topics
Author: Aaron Wootton
Publisher: American Mathematical Society
ISBN: 1470460254
Category : Mathematics
Languages : en
Pages : 366
Book Description
Automorphism groups of Riemann surfaces have been widely studied for almost 150 years. This area has persisted in part because it has close ties to many other topics of interest such as number theory, graph theory, mapping class groups, and geometric and computational group theory. In recent years there has been a major revival in this area due in part to great advances in computer algebra systems and progress in finite group theory. This volume provides a concise but thorough introduction for newcomers to the area while at the same time highlighting new developments for established researchers. The volume starts with two expository articles. The first of these articles gives a historical perspective of the field with an emphasis on highly symmetric surfaces, such as Hurwitz surfaces. The second expository article focuses on the future of the field, outlining some of the more popular topics in recent years and providing 78 open research problems across all topics. The remaining articles showcase new developments in the area and have specifically been chosen to cover a variety of topics to illustrate the range of diversity within the field.
Publisher: American Mathematical Society
ISBN: 1470460254
Category : Mathematics
Languages : en
Pages : 366
Book Description
Automorphism groups of Riemann surfaces have been widely studied for almost 150 years. This area has persisted in part because it has close ties to many other topics of interest such as number theory, graph theory, mapping class groups, and geometric and computational group theory. In recent years there has been a major revival in this area due in part to great advances in computer algebra systems and progress in finite group theory. This volume provides a concise but thorough introduction for newcomers to the area while at the same time highlighting new developments for established researchers. The volume starts with two expository articles. The first of these articles gives a historical perspective of the field with an emphasis on highly symmetric surfaces, such as Hurwitz surfaces. The second expository article focuses on the future of the field, outlining some of the more popular topics in recent years and providing 78 open research problems across all topics. The remaining articles showcase new developments in the area and have specifically been chosen to cover a variety of topics to illustrate the range of diversity within the field.
Computational Approach to Riemann Surfaces
Author: Alexander I. Bobenko TU Berlin
Publisher: Springer
ISBN: 3642174132
Category : Mathematics
Languages : en
Pages : 268
Book Description
This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.
Publisher: Springer
ISBN: 3642174132
Category : Mathematics
Languages : en
Pages : 268
Book Description
This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.
Nonlinear Dynamics
Author:
Publisher:
ISBN:
Category : Chaotic behavior in systems
Languages : en
Pages : 310
Book Description
Publisher:
ISBN:
Category : Chaotic behavior in systems
Languages : en
Pages : 310
Book Description