Author: Victor A. Sadovnichiy
Publisher: Springer
ISBN: 331996755X
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
In this book international expert authors provide solutions for modern fundamental problems including the complexity of computing of critical points for set-valued mappings, the behaviour of solutions of ordinary differential equations, partial differential equations and difference equations, or the development of an abstract theory of global attractors for multi-valued impulsive dynamical systems. These abstract mathematical approaches are applied to problem-solving in solid mechanics, hydro- and aerodynamics, optimization, decision making theory and control theory. This volume is therefore relevant to mathematicians as well as engineers working at the interface of these fields.
Modern Mathematics and Mechanics
Author: Victor A. Sadovnichiy
Publisher: Springer
ISBN: 331996755X
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
In this book international expert authors provide solutions for modern fundamental problems including the complexity of computing of critical points for set-valued mappings, the behaviour of solutions of ordinary differential equations, partial differential equations and difference equations, or the development of an abstract theory of global attractors for multi-valued impulsive dynamical systems. These abstract mathematical approaches are applied to problem-solving in solid mechanics, hydro- and aerodynamics, optimization, decision making theory and control theory. This volume is therefore relevant to mathematicians as well as engineers working at the interface of these fields.
Publisher: Springer
ISBN: 331996755X
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
In this book international expert authors provide solutions for modern fundamental problems including the complexity of computing of critical points for set-valued mappings, the behaviour of solutions of ordinary differential equations, partial differential equations and difference equations, or the development of an abstract theory of global attractors for multi-valued impulsive dynamical systems. These abstract mathematical approaches are applied to problem-solving in solid mechanics, hydro- and aerodynamics, optimization, decision making theory and control theory. This volume is therefore relevant to mathematicians as well as engineers working at the interface of these fields.
Advances in Mechanics and Mathematics
Author: David Yang Gao
Publisher: Springer Science & Business Media
ISBN: 1461302471
Category : Science
Languages : en
Pages : 329
Book Description
As any human activity needs goals, mathematical research needs problems -David Hilbert Mechanics is the paradise of mathematical sciences -Leonardo da Vinci Mechanics and mathematics have been complementary partners since Newton's time and the history of science shows much evidence of the ben eficial influence of these disciplines on each other. Driven by increasingly elaborate modern technological applications the symbiotic relationship between mathematics and mechanics is continually growing. However, the increasingly large number of specialist journals has generated a du ality gap between the two partners, and this gap is growing wider. Advances in Mechanics and Mathematics (AMMA) is intended to bridge the gap by providing multi-disciplinary publications which fall into the two following complementary categories: 1. An annual book dedicated to the latest developments in mechanics and mathematics; 2. Monographs, advanced textbooks, handbooks, edited vol umes and selected conference proceedings. The AMMA annual book publishes invited and contributed compre hensive reviews, research and survey articles within the broad area of modern mechanics and applied mathematics. Mechanics is understood here in the most general sense of the word, and is taken to embrace relevant physical and biological phenomena involving electromagnetic, thermal and quantum effects and biomechanics, as well as general dy namical systems. Especially encouraged are articles on mathematical and computational models and methods based on mechanics and their interactions with other fields. All contributions will be reviewed so as to guarantee the highest possible scientific standards.
Publisher: Springer Science & Business Media
ISBN: 1461302471
Category : Science
Languages : en
Pages : 329
Book Description
As any human activity needs goals, mathematical research needs problems -David Hilbert Mechanics is the paradise of mathematical sciences -Leonardo da Vinci Mechanics and mathematics have been complementary partners since Newton's time and the history of science shows much evidence of the ben eficial influence of these disciplines on each other. Driven by increasingly elaborate modern technological applications the symbiotic relationship between mathematics and mechanics is continually growing. However, the increasingly large number of specialist journals has generated a du ality gap between the two partners, and this gap is growing wider. Advances in Mechanics and Mathematics (AMMA) is intended to bridge the gap by providing multi-disciplinary publications which fall into the two following complementary categories: 1. An annual book dedicated to the latest developments in mechanics and mathematics; 2. Monographs, advanced textbooks, handbooks, edited vol umes and selected conference proceedings. The AMMA annual book publishes invited and contributed compre hensive reviews, research and survey articles within the broad area of modern mechanics and applied mathematics. Mechanics is understood here in the most general sense of the word, and is taken to embrace relevant physical and biological phenomena involving electromagnetic, thermal and quantum effects and biomechanics, as well as general dy namical systems. Especially encouraged are articles on mathematical and computational models and methods based on mechanics and their interactions with other fields. All contributions will be reviewed so as to guarantee the highest possible scientific standards.
Mathematical Methods of Classical Mechanics
Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Symmetry in Mechanics
Author: Stephanie Frank Singer
Publisher: Springer Science & Business Media
ISBN: 1461201896
Category : Mathematics
Languages : en
Pages : 201
Book Description
"And what is the use," thought Alice, "of a book without pictures or conversations in it?" -Lewis Carroll This book is written for modem undergraduate students - not the ideal stu dents that mathematics professors wish for (and who occasionally grace our campuses), but the students like many the author has taught: talented but ap preciating review and reinforcement of past course work; willing to work hard, but demanding context and motivation for the mathematics they are learning. To suit this audience, the author eschews density of topics and efficiency of presentation in favor of a gentler tone, a coherent story, digressions on mathe maticians, physicists and their notations, simple examples worked out in detail, and reinforcement of the basics. Dense and efficient texts play a crucial role in the education of budding (and budded) mathematicians and physicists. This book does not presume to improve on the classics in that genre. Rather, it aims to provide those classics with a large new generation of appreciative readers. This text introduces some basic constructs of modern symplectic geometry in the context of an old celestial mechanics problem, the two-body problem. We present the derivation of Kepler's laws of planetary motion from Newton's laws of gravitation, first in the style of an undergraduate physics course, and x Preface then again in the language of symplectic geometry. No previous exposure to symplectic geometry is required: we introduce and illustrate all necessary con structs.
Publisher: Springer Science & Business Media
ISBN: 1461201896
Category : Mathematics
Languages : en
Pages : 201
Book Description
"And what is the use," thought Alice, "of a book without pictures or conversations in it?" -Lewis Carroll This book is written for modem undergraduate students - not the ideal stu dents that mathematics professors wish for (and who occasionally grace our campuses), but the students like many the author has taught: talented but ap preciating review and reinforcement of past course work; willing to work hard, but demanding context and motivation for the mathematics they are learning. To suit this audience, the author eschews density of topics and efficiency of presentation in favor of a gentler tone, a coherent story, digressions on mathe maticians, physicists and their notations, simple examples worked out in detail, and reinforcement of the basics. Dense and efficient texts play a crucial role in the education of budding (and budded) mathematicians and physicists. This book does not presume to improve on the classics in that genre. Rather, it aims to provide those classics with a large new generation of appreciative readers. This text introduces some basic constructs of modern symplectic geometry in the context of an old celestial mechanics problem, the two-body problem. We present the derivation of Kepler's laws of planetary motion from Newton's laws of gravitation, first in the style of an undergraduate physics course, and x Preface then again in the language of symplectic geometry. No previous exposure to symplectic geometry is required: we introduce and illustrate all necessary con structs.
Introduction to Asymptotic Methods
Author: David Y. Gao
Publisher: CRC Press
ISBN: 1420011731
Category : Mathematics
Languages : en
Pages : 270
Book Description
Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important m
Publisher: CRC Press
ISBN: 1420011731
Category : Mathematics
Languages : en
Pages : 270
Book Description
Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important m
Physics for Mathematicians
Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Continuum Mechanics and Plasticity
Author: Han-Chin Wu
Publisher: CRC Press
ISBN: 0203491998
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Tremendous advances in computer technologies and methods have precipitated a great demand for refinements in the constitutive models of plasticity. Such refinements include the development of a model that would account for material anisotropy and produces results that compare well with experimental data. Key to developing such models-and to meeting
Publisher: CRC Press
ISBN: 0203491998
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Tremendous advances in computer technologies and methods have precipitated a great demand for refinements in the constitutive models of plasticity. Such refinements include the development of a model that would account for material anisotropy and produces results that compare well with experimental data. Key to developing such models-and to meeting
Beyond Perturbation
Author: Shijun Liao
Publisher: CRC Press
ISBN: 1135438293
Category : Mathematics
Languages : en
Pages : 335
Book Description
Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity. This book introduces a powerful new analytic method for nonlinear problems-homotopy analysis-that remains valid even with strong nonlinearity. In Part I, the author starts with a very simple example, then presents the basic ideas, detailed procedures, and the advantages (and limitations) of homotopy analysis. Part II illustrates the application of homotopy analysis to many interesting nonlinear problems. These range from simple bifurcations of a nonlinear boundary-value problem to the Thomas-Fermi atom model, Volterra's population model, Von Karman swirling viscous flow, and nonlinear progressive waves in deep water. Although the homotopy analysis method has been verified in a number of prestigious journals, it has yet to be fully detailed in book form. Written by a pioneer in its development, Beyond Pertubation: Introduction to the Homotopy Analysis Method is your first opportunity to explore the details of this valuable new approach, add it to your analytic toolbox, and perhaps make contributions to some of the questions that remain open.
Publisher: CRC Press
ISBN: 1135438293
Category : Mathematics
Languages : en
Pages : 335
Book Description
Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity. This book introduces a powerful new analytic method for nonlinear problems-homotopy analysis-that remains valid even with strong nonlinearity. In Part I, the author starts with a very simple example, then presents the basic ideas, detailed procedures, and the advantages (and limitations) of homotopy analysis. Part II illustrates the application of homotopy analysis to many interesting nonlinear problems. These range from simple bifurcations of a nonlinear boundary-value problem to the Thomas-Fermi atom model, Volterra's population model, Von Karman swirling viscous flow, and nonlinear progressive waves in deep water. Although the homotopy analysis method has been verified in a number of prestigious journals, it has yet to be fully detailed in book form. Written by a pioneer in its development, Beyond Pertubation: Introduction to the Homotopy Analysis Method is your first opportunity to explore the details of this valuable new approach, add it to your analytic toolbox, and perhaps make contributions to some of the questions that remain open.
Great Ideas of Modern Mathematics, Their Nature and Use
Author: Jagjit Singh
Publisher: Courier Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 324
Book Description
An explanation of the development and structure of the modern mathematics used in contemporary science
Publisher: Courier Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 324
Book Description
An explanation of the development and structure of the modern mathematics used in contemporary science
Configurational Forces
Author: Gerard A. Maugin
Publisher: CRC Press
ISBN: 9781439846131
Category : Mathematics
Languages : en
Pages : 562
Book Description
Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.
Publisher: CRC Press
ISBN: 9781439846131
Category : Mathematics
Languages : en
Pages : 562
Book Description
Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.