Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs

Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs PDF Author: Emad Walid Al Shalabi
Publisher: Gulf Professional Publishing
ISBN: 0128136057
Category : Technology & Engineering
Languages : en
Pages : 179

Get Book Here

Book Description
Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs provides a first of its kind review of the low salinity and engineered water injection (LSWI/EWI) techniques for today's more complex enhanced oil recovery methods. Reservoir engineers today are challenged in the design and physical mechanisms behind low salinity injection projects, and to date, the research is currently only located in numerous journal locations. This reference helps readers overcome these challenging issues with explanations on models, experiments, mechanism analysis, and field applications involved in low salinity and engineered water. Covering significant laboratory, numerical, and field studies, lessons learned are also highlighted along with key areas for future research in this fast-growing area of the oil and gas industry. After an introduction to its techniques, the initial chapters review the main experimental findings and explore the mechanisms behind the impact of LSWI/EWI on oil recovery. The book then moves on to the critical area of modeling and simulation, discusses the geochemistry of LSWI/EWI processes, and applications of LSWI/EWI techniques in the field, including the authors' own recommendations based on their extensive experience. It is an essential reference for professional reservoir and field engineers, researchers and students working on LSWI/EWI and seeking to apply these methods for increased oil recovery. - Teaches users how to understand the various mechanisms contributing to incremental oil recovery using low salinity and engineering water injection (LSWI/EWI) in sandstones and carbonates - Balances guidance between designing laboratory experiments, to applying the LSWI/EWI techniques at both pilot-scale and full-field-scale for real-world operations - Presents state-of-the-art approaches to simulation and modeling of LSWI/EWI

Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs

Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs PDF Author: Emad Walid Al Shalabi
Publisher: Gulf Professional Publishing
ISBN: 0128136057
Category : Technology & Engineering
Languages : en
Pages : 179

Get Book Here

Book Description
Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs provides a first of its kind review of the low salinity and engineered water injection (LSWI/EWI) techniques for today's more complex enhanced oil recovery methods. Reservoir engineers today are challenged in the design and physical mechanisms behind low salinity injection projects, and to date, the research is currently only located in numerous journal locations. This reference helps readers overcome these challenging issues with explanations on models, experiments, mechanism analysis, and field applications involved in low salinity and engineered water. Covering significant laboratory, numerical, and field studies, lessons learned are also highlighted along with key areas for future research in this fast-growing area of the oil and gas industry. After an introduction to its techniques, the initial chapters review the main experimental findings and explore the mechanisms behind the impact of LSWI/EWI on oil recovery. The book then moves on to the critical area of modeling and simulation, discusses the geochemistry of LSWI/EWI processes, and applications of LSWI/EWI techniques in the field, including the authors' own recommendations based on their extensive experience. It is an essential reference for professional reservoir and field engineers, researchers and students working on LSWI/EWI and seeking to apply these methods for increased oil recovery. - Teaches users how to understand the various mechanisms contributing to incremental oil recovery using low salinity and engineering water injection (LSWI/EWI) in sandstones and carbonates - Balances guidance between designing laboratory experiments, to applying the LSWI/EWI techniques at both pilot-scale and full-field-scale for real-world operations - Presents state-of-the-art approaches to simulation and modeling of LSWI/EWI

Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs

Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs PDF Author: Emad W. Al Shalabi
Publisher: Emad W. Al Shalabi
ISBN:
Category :
Languages : en
Pages : 697

Get Book Here

Book Description
The low salinity water injection technique (LSWI) has become one of the important research topics in the oil industry because of its possible advantages for improving oil recovery. Several mechanisms describing the LSWI process have been suggested in the literature; however, there is no consensus on a single main mechanism for the low salinity effect on oil recovery. As a result of the latter, there are few models for LSWI and especially for carbonates due to their heterogeneity and complexity. In this research, we proposed a systematic approach for modeling the LSWI effect on oil recovery from carbonates by proposing six different methods for history matching and three different LSWI models for the UTCHEM simulator, empirical, fundamental, and mechanistic LSWI models. The empirical LSWI model uses contact angle measurements and injected water salinity. The fundamental LSWI model captures the effect of LSWI through the trapping number. In the mechanistic LSWI model, we include the effect of different geochemical reactions through Gibbs free energy. Moreover, field-scale predictions of LSWI were performed and followed by a sensitivity analysis for the most influential design parameters using design of experiment (DoE). The LSWI technique was also optimized using the response surface methodology (RSM) where a response surface was built. Also, we moved a step further by investigating the combined effect of injecting low salinity water and carbon dioxide on oil recovery from carbonates through modeling of the process and numerical simulations using the UTCOMP simulator. The analysis showed that CO2 is the main controller of the residual oil saturation whereas the low salinity water boosts the oil production rate by increasing the oil relative permeability through wettability alteration towards a more water-wet state. In addition, geochemical modeling of LSWI only and the combined effect of LSWI and CO2 were performed using both UTCHEM and PHREEQC upon which the geochemical model in UTCHEM was modified and validated against PHREEQC. Based on the geochemical interpretation of the LSWI technique, we believe that wettability alteration is the main contributor to the LSWI effect on oil recovery from carbonates by anhydrite dissolution and surface charge change through pH exceeding the point of zero charge.

Hybrid Enhanced Oil Recovery Using Smart Waterflooding

Hybrid Enhanced Oil Recovery Using Smart Waterflooding PDF Author: Kun Sang Lee
Publisher: Gulf Professional Publishing
ISBN: 0128172983
Category : Science
Languages : en
Pages : 154

Get Book Here

Book Description
Hybrid Enhanced Oil Recovery Using Smart Waterflooding explains the latest technologies used in the integration of low-salinity and smart waterflooding in other EOR processes to reduce risks attributed to numerous difficulties in existing technologies, also introducing the synergetic effects. Covering both lab and field work and the challenges ahead, the book delivers a cutting-edge product for today's reservoir engineers. - Explains how smart waterflooding is beneficial to each EOR process, such as miscible, chemical and thermal technologies - Discusses the mechanics and modeling involved using geochemistry - Provides extensive tools, such as reservoir simulations through experiments and field tests, establishing a bridge between theory and practice

Chemical Enhanced Oil Recovery

Chemical Enhanced Oil Recovery PDF Author: Patrizio Raffa
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110640252
Category : Technology & Engineering
Languages : en
Pages : 186

Get Book Here

Book Description
This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).

Modern Chemical Enhanced Oil Recovery

Modern Chemical Enhanced Oil Recovery PDF Author: James J.Sheng
Publisher: Gulf Professional Publishing
ISBN: 0080961630
Category : Technology & Engineering
Languages : en
Pages : 648

Get Book Here

Book Description
Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques to the field's productive life generally by injecting water or gas to displace oil and drive it to a production wellbore, resulting in the recovery of 20 to 40 percent of the original oil in place. In the past two decades, major oil companies and research organizations have conducted extensive theoretical and laboratory EOR (enhanced oil recovery) researches, to include validating pilot and field trials relevant to much needed domestic commercial application, while western countries had terminated such endeavours almost completely due to low oil prices. In recent years, oil demand has soared and now these operations have become more desirable. This book is about the recent developments in the area as well as the technology for enhancing oil recovery. The book provides important case studies related to over one hundred EOR pilot and field applications in a variety of oil fields. These case studies focus on practical problems, underlying theoretical and modelling methods, operational parameters (e.g., injected chemical concentration, slug sizes, flooding schemes and well spacing), solutions and sensitivity studies, and performance optimization strategies. The book strikes an ideal balance between theory and practice, and would be invaluable to academicians and oil company practitioners alike. - Updated chemical EOR fundamentals providing clear picture of fundamental concepts - Practical cases with problems and solutions providing practical analogues and experiences - Actual data regarding ranges of operation parameters providing initial design parameters - Step-by-step calculation examples providing practical engineers with convenient procedures

Enhanced Oil Recovery Processes

Enhanced Oil Recovery Processes PDF Author: Ariffin Samsuri
Publisher: BoD – Books on Demand
ISBN: 1789851076
Category : Technology & Engineering
Languages : en
Pages : 162

Get Book Here

Book Description
Concerned with production decline, shortages of new oil reserves, and increasing world energy demand, the oil sector continues to search for economic and efficient techniques to enhance their oil recovery from the existing oil field using several enhanced oil recovery techniques (EOR)methods. Despite its highefficiency, widely acclaimed potentials, and limitations, the Low Salinity Water Flooding (LSWF), hybrid, and nanotechnology applications have gained vast interest with promising future to increase ultimate oil recovery, tackle operational challenges, reduce environmental damage, and allow the highest feasible recoveries with lower production costs. This synergistic combination has opened new routes for novel materials with fascinating properties. This book aims to provide an overview of EOR technology such as LSWF, hybrid, and nanotechnology applications in EOR processes.

Waterflooding

Waterflooding PDF Author: G. Paul Willhite
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 358

Get Book Here

Book Description
Waterflooding begins with understanding the basic principles of immiscible displacement, then presents a systematic procedure for designing a waterflood.

Enhanced Oil Recovery Field Case Studies

Enhanced Oil Recovery Field Case Studies PDF Author: James J.Sheng
Publisher: Gulf Professional Publishing
ISBN: 0123865468
Category : Science
Languages : en
Pages : 710

Get Book Here

Book Description
Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applications in a variety of oil fields. The case studies cover practical problems, underlying theoretical and modeling methods, operational parameters, solutions and sensitivity studies, and performance optimization strategies, benefitting academicians and oil company practitioners alike. - Strikes an ideal balance between theory and practice - Focuses on practical problems, underlying theoretical and modeling methods, and operational parameters - Designed for technical professionals, covering the fundamental as well as the advanced aspects of EOR

Core Analysis

Core Analysis PDF Author: Colin McPhee
Publisher: Elsevier
ISBN: 0444636579
Category : Technology & Engineering
Languages : en
Pages : 853

Get Book Here

Book Description
Core Analysis: A Best Practice Guide is a practical guide to the design of core analysis programs. Written to address the need for an updated set of recommended practices covering special core analysis and geomechanics tests, the book also provides unique insights into data quality control diagnosis and data utilization in reservoir models. The book's best practices and procedures benefit petrophysicists, geoscientists, reservoir engineers, and production engineers, who will find useful information on core data in reservoir static and dynamic models. It provides a solid understanding of the core analysis procedures and methods used by commercial laboratories, the details of lab data reporting required to create quality control tests, and the diagnostic plots and protocols that can be used to identify suspect or erroneous data. - Provides a practical overview of core analysis, from coring at the well site to laboratory data acquisition and interpretation - Defines current best practice in core analysis preparation and test procedures, and the diagnostic tools used to quality control core data - Provides essential information on design of core analysis programs and to judge the quality and reliability of core analysis data ultimately used in reservoir evaluation - Of specific interest to those working in core analysis, porosity, relative permeability, and geomechanics

Surface Complexation Modeling

Surface Complexation Modeling PDF Author: David A. Dzombak
Publisher: John Wiley & Sons
ISBN: 9780471637318
Category : Science
Languages : en
Pages : 430

Get Book Here

Book Description
Provides a description of the thermodynamic model, data treatment procedures and the thermodynamic constants for hydrous ferric oxide. Includes detailed coverage of the model and the parameter extraction procedure.