Author: Abba B. Gumel
Publisher: American Mathematical Soc.
ISBN: 0821843842
Category : Mathematics
Languages : en
Pages : 286
Book Description
This volume stems from two DIMACS activities, the U.S.-Africa Advanced Study Institute and the DIMACS Workshop, both on Mathematical Modeling of Infectious Diseases in Africa, held in South Africa in the summer of 2007. It contains both tutorial papers and research papers. Students and researchers should find the papers on modeling and analyzing certain diseases currently affecting Africa very informative. In particular, they can learn basic principles of disease modeling and stability from the tutorial papers where continuous and discrete time models, optimal control, and stochastic features are introduced.
Modeling Paradigms and Analysis of Disease Transmission Models
Author: Abba B. Gumel
Publisher: American Mathematical Soc.
ISBN: 0821843842
Category : Mathematics
Languages : en
Pages : 286
Book Description
This volume stems from two DIMACS activities, the U.S.-Africa Advanced Study Institute and the DIMACS Workshop, both on Mathematical Modeling of Infectious Diseases in Africa, held in South Africa in the summer of 2007. It contains both tutorial papers and research papers. Students and researchers should find the papers on modeling and analyzing certain diseases currently affecting Africa very informative. In particular, they can learn basic principles of disease modeling and stability from the tutorial papers where continuous and discrete time models, optimal control, and stochastic features are introduced.
Publisher: American Mathematical Soc.
ISBN: 0821843842
Category : Mathematics
Languages : en
Pages : 286
Book Description
This volume stems from two DIMACS activities, the U.S.-Africa Advanced Study Institute and the DIMACS Workshop, both on Mathematical Modeling of Infectious Diseases in Africa, held in South Africa in the summer of 2007. It contains both tutorial papers and research papers. Students and researchers should find the papers on modeling and analyzing certain diseases currently affecting Africa very informative. In particular, they can learn basic principles of disease modeling and stability from the tutorial papers where continuous and discrete time models, optimal control, and stochastic features are introduced.
Mathematical Tools for Understanding Infectious Disease Dynamics
Author: Odo Diekmann
Publisher: Princeton University Press
ISBN: 0691155399
Category : Mathematics
Languages : en
Pages : 516
Book Description
This book explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology.
Publisher: Princeton University Press
ISBN: 0691155399
Category : Mathematics
Languages : en
Pages : 516
Book Description
This book explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology.
An Introduction to Mathematical Epidemiology
Author: Maia Martcheva
Publisher: Springer
ISBN: 1489976124
Category : Mathematics
Languages : en
Pages : 462
Book Description
The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of infectious diseases. It includes model building, fitting to data, local and global analysis techniques. Various types of deterministic dynamical models are considered: ordinary differential equation models, delay-differential equation models, difference equation models, age-structured PDE models and diffusion models. It includes various techniques for the computation of the basic reproduction number as well as approaches to the epidemiological interpretation of the reproduction number. MATLAB code is included to facilitate the data fitting and the simulation with age-structured models.
Publisher: Springer
ISBN: 1489976124
Category : Mathematics
Languages : en
Pages : 462
Book Description
The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of infectious diseases. It includes model building, fitting to data, local and global analysis techniques. Various types of deterministic dynamical models are considered: ordinary differential equation models, delay-differential equation models, difference equation models, age-structured PDE models and diffusion models. It includes various techniques for the computation of the basic reproduction number as well as approaches to the epidemiological interpretation of the reproduction number. MATLAB code is included to facilitate the data fitting and the simulation with age-structured models.
Mathematical Models for Communicable Diseases
Author: Fred Brauer
Publisher: SIAM
ISBN: 9781611972429
Category : Mathematics
Languages : en
Pages : 288
Book Description
This graduate-level textbook appeals to readers interested in the mathematical theory of disease transmission models. It is self-contained and accessible to readers who are comfortable with calculus, elementary differential equations, and linear algebra. The book provides insight into modeling cross-immunity between different disease strains (such as influenza) and the synergistic interactions between multiple diseases (e.g., HIV and tuberculosis); diseases transmitted by viral agents, bacteria, and vectors (e.g., mosquitos transmitting malaria to humans); and both epidemic and endemic disease occurrences.
Publisher: SIAM
ISBN: 9781611972429
Category : Mathematics
Languages : en
Pages : 288
Book Description
This graduate-level textbook appeals to readers interested in the mathematical theory of disease transmission models. It is self-contained and accessible to readers who are comfortable with calculus, elementary differential equations, and linear algebra. The book provides insight into modeling cross-immunity between different disease strains (such as influenza) and the synergistic interactions between multiple diseases (e.g., HIV and tuberculosis); diseases transmitted by viral agents, bacteria, and vectors (e.g., mosquitos transmitting malaria to humans); and both epidemic and endemic disease occurrences.
Computational And Mathematical Population Dynamics
Author: Necibe Tuncer
Publisher: World Scientific
ISBN: 9811263043
Category : Mathematics
Languages : en
Pages : 470
Book Description
This book is a collection of works that represent the recent advancements in computational and mathematical methods applied to population dynamics. It concentrates on both development of new tools as well as on innovative use of existing tools to obtain new understanding of biological systems. The volume introduces new state-of-the-art techniques for defining and solving numerically control problems in mathematical biology in which the control appears linearly. Such problems produce simpler optimal controls that can be implemented in practice. The book further develops tools for fitting multi-scale models to multi-scale data and studying the practical identifiability of the parameters from multi-scale data. Novel model of Zika with Wolbahia infection in mosquitoes suggests that the most suitable control strategy to control Zika in the absence of Wolbahia is killing mosquitoes but the most suitable strategy when mosquitoes are Wolbahia infected is the treatment of humans.A completely novel methodology of developing discrete-continuous hybrid models of multi-species interactions is also introduced together with avantgarde techniques for discrete-continuous hybrid models analysis. A mathematical model leads to new observations of the within-host virus dynamics and its interplay with the immune responses. In particular, it is observed that the parameters promoting CTL responses need to be boosted over parameters promoting antibody production to obtain a biologically relevant steady state. A novel stochastic model of COVID-19 investigates quarantine and lock down as important strategies for control and elimination of COVID-19.
Publisher: World Scientific
ISBN: 9811263043
Category : Mathematics
Languages : en
Pages : 470
Book Description
This book is a collection of works that represent the recent advancements in computational and mathematical methods applied to population dynamics. It concentrates on both development of new tools as well as on innovative use of existing tools to obtain new understanding of biological systems. The volume introduces new state-of-the-art techniques for defining and solving numerically control problems in mathematical biology in which the control appears linearly. Such problems produce simpler optimal controls that can be implemented in practice. The book further develops tools for fitting multi-scale models to multi-scale data and studying the practical identifiability of the parameters from multi-scale data. Novel model of Zika with Wolbahia infection in mosquitoes suggests that the most suitable control strategy to control Zika in the absence of Wolbahia is killing mosquitoes but the most suitable strategy when mosquitoes are Wolbahia infected is the treatment of humans.A completely novel methodology of developing discrete-continuous hybrid models of multi-species interactions is also introduced together with avantgarde techniques for discrete-continuous hybrid models analysis. A mathematical model leads to new observations of the within-host virus dynamics and its interplay with the immune responses. In particular, it is observed that the parameters promoting CTL responses need to be boosted over parameters promoting antibody production to obtain a biologically relevant steady state. A novel stochastic model of COVID-19 investigates quarantine and lock down as important strategies for control and elimination of COVID-19.
Optimization in Control Applications
Author: Guillermo Valencia-Palomo
Publisher: MDPI
ISBN: 3038974471
Category : Mathematics
Languages : en
Pages : 257
Book Description
This book is a printed edition of the Special Issue "Optimization in Control Applications" that was published in MCA
Publisher: MDPI
ISBN: 3038974471
Category : Mathematics
Languages : en
Pages : 257
Book Description
This book is a printed edition of the Special Issue "Optimization in Control Applications" that was published in MCA
Numerical Mathematics and Advanced Applications ENUMATH 2019
Author: Fred J. Vermolen
Publisher: Springer Nature
ISBN: 3030558746
Category : Mathematics
Languages : en
Pages : 1185
Book Description
This book gathers outstanding papers presented at the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2019). The conference was organized by Delft University of Technology and was held in Egmond aan Zee, the Netherlands, from September 30 to October 4, 2019. Leading experts in the field presented the latest results and ideas regarding the design, implementation and analysis of numerical algorithms, as well as their applications to relevant societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications, all examined at the highest level of international expertise. The first ENUMATH was held in Paris in 1995, with successive installments at various sites across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), Ankara (2015) and Bergen (2017).
Publisher: Springer Nature
ISBN: 3030558746
Category : Mathematics
Languages : en
Pages : 1185
Book Description
This book gathers outstanding papers presented at the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2019). The conference was organized by Delft University of Technology and was held in Egmond aan Zee, the Netherlands, from September 30 to October 4, 2019. Leading experts in the field presented the latest results and ideas regarding the design, implementation and analysis of numerical algorithms, as well as their applications to relevant societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications, all examined at the highest level of international expertise. The first ENUMATH was held in Paris in 1995, with successive installments at various sites across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), Ankara (2015) and Bergen (2017).
Modeling Infectious Diseases in Humans and Animals
Author: Matt J. Keeling
Publisher: Princeton University Press
ISBN: 1400841038
Category : Science
Languages : en
Pages : 385
Book Description
For epidemiologists, evolutionary biologists, and health-care professionals, real-time and predictive modeling of infectious disease is of growing importance. This book provides a timely and comprehensive introduction to the modeling of infectious diseases in humans and animals, focusing on recent developments as well as more traditional approaches. Matt Keeling and Pejman Rohani move from modeling with simple differential equations to more recent, complex models, where spatial structure, seasonal "forcing," or stochasticity influence the dynamics, and where computer simulation needs to be used to generate theory. In each of the eight chapters, they deal with a specific modeling approach or set of techniques designed to capture a particular biological factor. They illustrate the methodology used with examples from recent research literature on human and infectious disease modeling, showing how such techniques can be used in practice. Diseases considered include BSE, foot-and-mouth, HIV, measles, rubella, smallpox, and West Nile virus, among others. Particular attention is given throughout the book to the development of practical models, useful both as predictive tools and as a means to understand fundamental epidemiological processes. To emphasize this approach, the last chapter is dedicated to modeling and understanding the control of diseases through vaccination, quarantine, or culling. Comprehensive, practical introduction to infectious disease modeling Builds from simple to complex predictive models Models and methodology fully supported by examples drawn from research literature Practical models aid students' understanding of fundamental epidemiological processes For many of the models presented, the authors provide accompanying programs written in Java, C, Fortran, and MATLAB In-depth treatment of role of modeling in understanding disease control
Publisher: Princeton University Press
ISBN: 1400841038
Category : Science
Languages : en
Pages : 385
Book Description
For epidemiologists, evolutionary biologists, and health-care professionals, real-time and predictive modeling of infectious disease is of growing importance. This book provides a timely and comprehensive introduction to the modeling of infectious diseases in humans and animals, focusing on recent developments as well as more traditional approaches. Matt Keeling and Pejman Rohani move from modeling with simple differential equations to more recent, complex models, where spatial structure, seasonal "forcing," or stochasticity influence the dynamics, and where computer simulation needs to be used to generate theory. In each of the eight chapters, they deal with a specific modeling approach or set of techniques designed to capture a particular biological factor. They illustrate the methodology used with examples from recent research literature on human and infectious disease modeling, showing how such techniques can be used in practice. Diseases considered include BSE, foot-and-mouth, HIV, measles, rubella, smallpox, and West Nile virus, among others. Particular attention is given throughout the book to the development of practical models, useful both as predictive tools and as a means to understand fundamental epidemiological processes. To emphasize this approach, the last chapter is dedicated to modeling and understanding the control of diseases through vaccination, quarantine, or culling. Comprehensive, practical introduction to infectious disease modeling Builds from simple to complex predictive models Models and methodology fully supported by examples drawn from research literature Practical models aid students' understanding of fundamental epidemiological processes For many of the models presented, the authors provide accompanying programs written in Java, C, Fortran, and MATLAB In-depth treatment of role of modeling in understanding disease control
BioMath in the Schools
Author: Margaret B. Cozzens
Publisher: American Mathematical Soc.
ISBN: 0821842951
Category : Computers
Languages : en
Pages : 266
Book Description
Even though contemporary biology and mathematics are inextricably linked, high school biology and mathematics courses have traditionally been taught in isolation. But this is beginning to change. This volume presents papers related to the integration of biology and mathematics in high school classes. The first part of the book provides the rationale for integrating mathematics and biology in high school courses as well as opportunities for doing so. The second part explores the development and integration of curricular materials and includes responses from teachers. Papers in the third part of the book explore the interconnections between biology and mathematics in light of new technologies in biology. The last paper in the book discusses what works and what doesn't and presents positive responses from students to the integration of mathematics and biology in their classes.
Publisher: American Mathematical Soc.
ISBN: 0821842951
Category : Computers
Languages : en
Pages : 266
Book Description
Even though contemporary biology and mathematics are inextricably linked, high school biology and mathematics courses have traditionally been taught in isolation. But this is beginning to change. This volume presents papers related to the integration of biology and mathematics in high school classes. The first part of the book provides the rationale for integrating mathematics and biology in high school courses as well as opportunities for doing so. The second part explores the development and integration of curricular materials and includes responses from teachers. Papers in the third part of the book explore the interconnections between biology and mathematics in light of new technologies in biology. The last paper in the book discusses what works and what doesn't and presents positive responses from students to the integration of mathematics and biology in their classes.
An Introduction to Mathematical Modeling of Infectious Diseases
Author: Michael Y. Li
Publisher: Springer
ISBN: 3319721224
Category : Mathematics
Languages : en
Pages : 163
Book Description
This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.
Publisher: Springer
ISBN: 3319721224
Category : Mathematics
Languages : en
Pages : 163
Book Description
This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.