Modeling in Fluid Mechanics

Modeling in Fluid Mechanics PDF Author: Igor Gaissinski
Publisher: CRC Press
ISBN: 1351029045
Category : Mathematics
Languages : en
Pages : 658

Get Book Here

Book Description
This volume is dedicated to modeling in fluid mechanics and is divided into four chapters, which contain a significant number of useful exercises with solutions. The authors provide relatively complete references on relevant topics in the bibliography at the end of each chapter.

Modeling in Fluid Mechanics

Modeling in Fluid Mechanics PDF Author: Igor Gaissinski
Publisher: CRC Press
ISBN: 1351029045
Category : Mathematics
Languages : en
Pages : 658

Get Book Here

Book Description
This volume is dedicated to modeling in fluid mechanics and is divided into four chapters, which contain a significant number of useful exercises with solutions. The authors provide relatively complete references on relevant topics in the bibliography at the end of each chapter.

Modelling Fluid Flow

Modelling Fluid Flow PDF Author: János Vad
Publisher: Springer Science & Business Media
ISBN: 3662087979
Category : Technology & Engineering
Languages : en
Pages : 424

Get Book Here

Book Description
Modelling Fluid Flow presents invited lectures, workshop summaries and a selection of papers from a recent international conference CMFF '03 on fluid technology. The lectures follow the current evolution and the newest challenges of the computational methods and measuring techniques related to fluid flow. The workshop summaries reflect the recent trends, open questions and unsolved problems in the mutually inspiring fields of experimental and computational fluid mechanics. The papers cover a wide range of fluids engineering, including reactive flow, chemical and process engineering, environmental fluid dynamics, turbulence modelling, numerical methods, and fluid machinery.

Interfacial Fluid Mechanics

Interfacial Fluid Mechanics PDF Author: Vladimir S. Ajaev
Publisher: Springer Science & Business Media
ISBN: 1461413419
Category : Technology & Engineering
Languages : en
Pages : 219

Get Book Here

Book Description
Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then, several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail. Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces,evaporation/condensation, and surfactant phenomena are discussed in the later chapters.

Computational Modeling in Biological Fluid Dynamics

Computational Modeling in Biological Fluid Dynamics PDF Author: Lisa J. Fauci
Publisher: Springer Science & Business Media
ISBN: 9780387952338
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
This volume contains invited and refereed papers based upon presentations given in the IMA workshop on Computational Modeling in Biological Fluid Dynamics during January of 1999, which was part of the year-long program "Mathematics in Biology." This workshop brought together biologists, zoologists, engineers, and mathematicians working on a variety of issues in biological fluid dynamics. A unifying theme in biological fluid dynamics is the interaction of elastic boundaries with a surrounding fluid. These moving boundary problems, coupled with the equations of incompressible, viscuous fluid dynamics, pose formidable challenges to the computational scientist. In this volume, a variety of computational methods are presented, both in general terms and within the context of applications including ciliary beating, blood flow, and insect flight. Our hope is that this collection will allow others to become aware of and interested in the exciting accomplishments and challenges uncovered during this workshop

Direct Modeling For Computational Fluid Dynamics: Construction And Application Of Unified Gas-kinetic Schemes

Direct Modeling For Computational Fluid Dynamics: Construction And Application Of Unified Gas-kinetic Schemes PDF Author: Kun Xu
Publisher: World Scientific
ISBN: 9814623733
Category : Technology & Engineering
Languages : en
Pages : 335

Get Book Here

Book Description
Computational fluid dynamics (CFD) studies the flow motion in a discretized space. Its basic scale resolved is the mesh size and time step. The CFD algorithm can be constructed through a direct modeling of flow motion in such a space. This book presents the principle of direct modeling for the CFD algorithm development, and the construction unified gas-kinetic scheme (UGKS). The UGKS accurately captures the gas evolution from rarefied to continuum flows. Numerically it provides a continuous spectrum of governing equation in the whole flow regimes.

Applied Computational Fluid Dynamics and Turbulence Modeling

Applied Computational Fluid Dynamics and Turbulence Modeling PDF Author: Sal Rodriguez
Publisher: Springer Nature
ISBN: 3030286916
Category : Computers
Languages : en
Pages : 316

Get Book Here

Book Description
This unique text provides engineering students and practicing professionals with a comprehensive set of practical, hands-on guidelines and dozens of step-by-step examples for performing state-of-the-art, reliable computational fluid dynamics (CFD) and turbulence modeling. Key CFD and turbulence programs are included as well. The text first reviews basic CFD theory, and then details advanced applied theories for estimating turbulence, including new algorithms created by the author. The book gives practical advice on selecting appropriate turbulence models and presents best CFD practices for modeling and generating reliable simulations. The author gathered and developed the book’s hundreds of tips, tricks, and examples over three decades of research and development at three national laboratories and at the University of New Mexico—many in print for the first time in this book. The book also places a strong emphasis on recent CFD and turbulence advancements found in the literature over the past five to 10 years. Readers can apply the author’s advice and insights whether using commercial or national laboratory software such as ANSYS Fluent, STAR-CCM, COMSOL, Flownex, SimScale, OpenFOAM, Fuego, KIVA, BIGHORN, or their own computational tools. Applied Computational Fluid Dynamics and Turbulence Modeling is a practical, complementary companion for academic CFD textbooks and senior project courses in mechanical, civil, chemical, and nuclear engineering; senior undergraduate and graduate CFD and turbulence modeling courses; and for professionals developing commercial and research applications.

Modeling in Fluid Mechanics

Modeling in Fluid Mechanics PDF Author: Igor Gaissinski
Publisher: CRC Press
ISBN: 1351029053
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This volume is dedicated to modeling in fluid mechanics and is divided into four chapters, which contain a significant number of useful exercises with solutions. The authors provide relatively complete references on relevant topics in the bibliography at the end of each chapter.

Numerical Simulation in Fluid Dynamics

Numerical Simulation in Fluid Dynamics PDF Author: Michael Griebel
Publisher: SIAM
ISBN: 0898713986
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
In this translation of the German edition, the authors provide insight into the numerical simulation of fluid flow. Using a simple numerical method as an expository example, the individual steps of scientific computing are presented: the derivation of the mathematical model; the discretization of the model equations; the development of algorithms; parallelization; and visualization of the computed data. In addition to the treatment of the basic equations for modeling laminar, transient flow of viscous, incompressible fluids - the Navier-Stokes equations - the authors look at the simulation of free surface flows; energy and chemical transport; and turbulence. Readers are enabled to write their own flow simulation program from scratch. The variety of applications is shown in several simulation results, including 92 black-and-white and 18 color illustrations. After reading this book, readers should be able to understand more enhanced algorithms of computational fluid dynamics and apply their new knowledge to other scientific fields.

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids PDF Author: Laura De Lorenzis
Publisher: Springer Nature
ISBN: 3030375188
Category : Science
Languages : en
Pages : 225

Get Book Here

Book Description
The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.

Tracer Technology

Tracer Technology PDF Author: Octave Levenspiel
Publisher: Springer Science & Business Media
ISBN: 1441980741
Category : Technology & Engineering
Languages : en
Pages : 153

Get Book Here

Book Description
The tracer method was first introduced to measure the actual flow of fluid in a vessel, and then to develop a suitable model to represent this flow. Such models are used to follow the flow of fluid in chemical reactors and other process units, in rivers and streams, and through soils and porous structures. Also, in medicine they are used to study the flow of chemicals, harmful or not, in the blood streams of animals and man. Tracer Technology, written by Octave Levenspiel, shows how we use tracers to follow the flow of fluids and then we develop a variety of models to represent these flows. This activity is called tracer technology.