Author: Iraj Sadegh Amiri
Publisher: Springer
ISBN: 9811065500
Category : Technology & Engineering
Languages : en
Pages : 92
Book Description
This book discusses analytical approaches and modeling of the breakdown voltage (BV) effects on graphene-based transistors. It presents semi-analytical models for lateral electric field, length of velocity saturation region (LVSR), ionization coefficient (α), and breakdown voltage (BV) of single and double-gate graphene nanoribbon field effect transistors (GNRFETs). The application of Gauss’s law at drain and source regions is employed in order to derive surface potential and lateral electric field equations. LVSR is then calculated as a solution of surface potential at saturation condition. The ionization coefficient is modelled and calculated by deriving equations for probability of collisions in ballistic and drift modes based on the lucky drift theory of ionization. The threshold energy of ionization is computed using simulation and an empirical equation is derived semi-analytically. Lastly avalanche breakdown condition is employed to calculate the lateral BV. On the basis of this, simple analytical and semi-analytical models are proposed for the LVSR and BV, which could be used in the design and optimization of semiconductor devices and sensors. The proposed equations are used to examine BV at different channel lengths, supply voltages, oxide thickness, GNR widths, and gate voltages. Simulation results show that the operating voltage of FETs could be as low as 0.25 V in order to prevent breakdown. However, after optimization, it can go as high as 1.5 V. This work is useful for researchers working in the area of graphene nanoribbon-based transistors.
Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor
Author: Iraj Sadegh Amiri
Publisher: Springer
ISBN: 9811065500
Category : Technology & Engineering
Languages : en
Pages : 92
Book Description
This book discusses analytical approaches and modeling of the breakdown voltage (BV) effects on graphene-based transistors. It presents semi-analytical models for lateral electric field, length of velocity saturation region (LVSR), ionization coefficient (α), and breakdown voltage (BV) of single and double-gate graphene nanoribbon field effect transistors (GNRFETs). The application of Gauss’s law at drain and source regions is employed in order to derive surface potential and lateral electric field equations. LVSR is then calculated as a solution of surface potential at saturation condition. The ionization coefficient is modelled and calculated by deriving equations for probability of collisions in ballistic and drift modes based on the lucky drift theory of ionization. The threshold energy of ionization is computed using simulation and an empirical equation is derived semi-analytically. Lastly avalanche breakdown condition is employed to calculate the lateral BV. On the basis of this, simple analytical and semi-analytical models are proposed for the LVSR and BV, which could be used in the design and optimization of semiconductor devices and sensors. The proposed equations are used to examine BV at different channel lengths, supply voltages, oxide thickness, GNR widths, and gate voltages. Simulation results show that the operating voltage of FETs could be as low as 0.25 V in order to prevent breakdown. However, after optimization, it can go as high as 1.5 V. This work is useful for researchers working in the area of graphene nanoribbon-based transistors.
Publisher: Springer
ISBN: 9811065500
Category : Technology & Engineering
Languages : en
Pages : 92
Book Description
This book discusses analytical approaches and modeling of the breakdown voltage (BV) effects on graphene-based transistors. It presents semi-analytical models for lateral electric field, length of velocity saturation region (LVSR), ionization coefficient (α), and breakdown voltage (BV) of single and double-gate graphene nanoribbon field effect transistors (GNRFETs). The application of Gauss’s law at drain and source regions is employed in order to derive surface potential and lateral electric field equations. LVSR is then calculated as a solution of surface potential at saturation condition. The ionization coefficient is modelled and calculated by deriving equations for probability of collisions in ballistic and drift modes based on the lucky drift theory of ionization. The threshold energy of ionization is computed using simulation and an empirical equation is derived semi-analytically. Lastly avalanche breakdown condition is employed to calculate the lateral BV. On the basis of this, simple analytical and semi-analytical models are proposed for the LVSR and BV, which could be used in the design and optimization of semiconductor devices and sensors. The proposed equations are used to examine BV at different channel lengths, supply voltages, oxide thickness, GNR widths, and gate voltages. Simulation results show that the operating voltage of FETs could be as low as 0.25 V in order to prevent breakdown. However, after optimization, it can go as high as 1.5 V. This work is useful for researchers working in the area of graphene nanoribbon-based transistors.
Graphene Nanoelectronics
Author: Raghu Murali
Publisher: Springer Science & Business Media
ISBN: 1461405483
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
Graphene has emerged as a potential candidate to replace traditional CMOS for a number of electronic applications; this book presents the latest advances in graphene nanoelectronics and the potential benefits of using graphene in a wide variety of electronic applications. The book also provides details on various methods to grow graphene, including epitaxial, CVD, and chemical methods. This book serves as a spring-board for anyone trying to start working on graphene. The book is also suitable to experts who wish to update themselves with the latest findings in the field.
Publisher: Springer Science & Business Media
ISBN: 1461405483
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
Graphene has emerged as a potential candidate to replace traditional CMOS for a number of electronic applications; this book presents the latest advances in graphene nanoelectronics and the potential benefits of using graphene in a wide variety of electronic applications. The book also provides details on various methods to grow graphene, including epitaxial, CVD, and chemical methods. This book serves as a spring-board for anyone trying to start working on graphene. The book is also suitable to experts who wish to update themselves with the latest findings in the field.
Advanced Nanoelectronics
Author: Razali Ismail
Publisher: CRC Press
ISBN: 1439856818
Category : Science
Languages : en
Pages : 456
Book Description
While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.
Publisher: CRC Press
ISBN: 1439856818
Category : Science
Languages : en
Pages : 456
Book Description
While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.
Graphene Science Handbook, Six-Volume Set
Author: Mahmood Aliofkhazraei
Publisher: CRC Press
ISBN: 1466591196
Category : Science
Languages : en
Pages : 3379
Book Description
Graphene is the strongest material ever studied and can be an efficient substitute for silicon. This six-volume handbook focuses on fabrication methods, nanostructure and atomic arrangement, electrical and optical properties, mechanical and chemical properties, size-dependent properties, and applications and industrialization. There is no other major reference work of this scope on the topic of graphene, which is one of the most researched materials of the twenty-first century. The set includes contributions from top researchers in the field and a foreword written by two Nobel laureates in physics. Volumes in the set: K20503 Graphene Science Handbook: Mechanical and Chemical Properties (ISBN: 9781466591233) K20505 Graphene Science Handbook: Fabrication Methods (ISBN: 9781466591271) K20507 Graphene Science Handbook: Electrical and Optical Properties (ISBN: 9781466591318) K20508 Graphene Science Handbook: Applications and Industrialization (ISBN: 9781466591332) K20509 Graphene Science Handbook: Size-Dependent Properties (ISBN: 9781466591356) K20510 Graphene Science Handbook: Nanostructure and Atomic Arrangement (ISBN: 9781466591370)
Publisher: CRC Press
ISBN: 1466591196
Category : Science
Languages : en
Pages : 3379
Book Description
Graphene is the strongest material ever studied and can be an efficient substitute for silicon. This six-volume handbook focuses on fabrication methods, nanostructure and atomic arrangement, electrical and optical properties, mechanical and chemical properties, size-dependent properties, and applications and industrialization. There is no other major reference work of this scope on the topic of graphene, which is one of the most researched materials of the twenty-first century. The set includes contributions from top researchers in the field and a foreword written by two Nobel laureates in physics. Volumes in the set: K20503 Graphene Science Handbook: Mechanical and Chemical Properties (ISBN: 9781466591233) K20505 Graphene Science Handbook: Fabrication Methods (ISBN: 9781466591271) K20507 Graphene Science Handbook: Electrical and Optical Properties (ISBN: 9781466591318) K20508 Graphene Science Handbook: Applications and Industrialization (ISBN: 9781466591332) K20509 Graphene Science Handbook: Size-Dependent Properties (ISBN: 9781466591356) K20510 Graphene Science Handbook: Nanostructure and Atomic Arrangement (ISBN: 9781466591370)
Graphene Field-Effect Transistors
Author: Omar Azzaroni
Publisher: John Wiley & Sons
ISBN: 3527843388
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
Graphene Field-Effect Transistors In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the fabrication of graphene field effect transistors and their sensing applications. Graphene Field-Effect Transistors includes information on: Electronic properties of graphene, production of graphene oxide and reduced graphene oxide, and graphene functionalization Fundamentals and fabrication of graphene field effect transistors, and nanomaterial/graphene nanostructure-based field-effect transistors Graphene field-effect transistors integrated with microfluidic platforms and flexible graphene field-effect transistors Graphene field-effect transistors for diagnostics applications, and DNA biosensors and immunosensors based on graphene field-effect transistors Graphene field-effect transistors for targeting cancer molecules, brain activity recording, bacterial detection, and detection of smell and taste Providing both fundamentals of the technology and an in-depth overview of using graphene field effect transistors for fabricating bioelectronic devices that can be applied for point-of-care diagnostics, Graphene Field-Effect Transistors is an essential reference for materials scientists, engineering scientists, laboratory medics, and biotechnologists.
Publisher: John Wiley & Sons
ISBN: 3527843388
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
Graphene Field-Effect Transistors In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the fabrication of graphene field effect transistors and their sensing applications. Graphene Field-Effect Transistors includes information on: Electronic properties of graphene, production of graphene oxide and reduced graphene oxide, and graphene functionalization Fundamentals and fabrication of graphene field effect transistors, and nanomaterial/graphene nanostructure-based field-effect transistors Graphene field-effect transistors integrated with microfluidic platforms and flexible graphene field-effect transistors Graphene field-effect transistors for diagnostics applications, and DNA biosensors and immunosensors based on graphene field-effect transistors Graphene field-effect transistors for targeting cancer molecules, brain activity recording, bacterial detection, and detection of smell and taste Providing both fundamentals of the technology and an in-depth overview of using graphene field effect transistors for fabricating bioelectronic devices that can be applied for point-of-care diagnostics, Graphene Field-Effect Transistors is an essential reference for materials scientists, engineering scientists, laboratory medics, and biotechnologists.
Two-Dimensional Electronics - Prospects and Challenges
Author: Frank Schwierz
Publisher: MDPI
ISBN: 3038422495
Category : Technology & Engineering
Languages : en
Pages : 265
Book Description
This book is a printed edition of the Special Issue "Two-Dimensional Electronics - Prospects and Challenges" that was published in Electronics
Publisher: MDPI
ISBN: 3038422495
Category : Technology & Engineering
Languages : en
Pages : 265
Book Description
This book is a printed edition of the Special Issue "Two-Dimensional Electronics - Prospects and Challenges" that was published in Electronics
AI for Big Data-Based Engineering Applications from Security Perspectives
Author: Balwinder Raj
Publisher: CRC Press
ISBN: 1000901556
Category : Computers
Languages : en
Pages : 227
Book Description
Artificial intelligence (AI), machine learning, and advanced electronic circuits involve learning from every data input and using those inputs to generate new rules for future business analytics. AI and machine learning are now giving us new opportunities to use big data that we already had, as well as unleash a whole lot of new use cases with new data types. With the increasing use of AI dealing with highly sensitive information such as healthcare, adequate security measures are required to securely store and transmit this information. This book provides a broader coverage of the basic aspects of advanced circuits design and applications. AI for Big Data-Based Engineering Applications from Security Perspectives is an integrated source that aims at understanding the basic concepts associated with the security of advanced circuits. The content includes theoretical frameworks and recent empirical findings in the field to understand the associated principles, key challenges, and recent real-time applications of advanced circuits, AI, and big data security. It illustrates the notions, models, and terminologies that are widely used in the area of Very Large Scale Integration (VLSI) circuits, security, identifies the existing security issues in the field, and evaluates the underlying factors that influence system security. This work emphasizes the idea of understanding the motivation behind advanced circuit design to establish the AI interface and to mitigate security attacks in a better way for big data. This book also outlines exciting areas of future research where already existing methodologies can be implemented. This material is suitable for students, researchers, and professionals with research interest in AI for big data–based engineering applications, faculty members across universities, and software developers.
Publisher: CRC Press
ISBN: 1000901556
Category : Computers
Languages : en
Pages : 227
Book Description
Artificial intelligence (AI), machine learning, and advanced electronic circuits involve learning from every data input and using those inputs to generate new rules for future business analytics. AI and machine learning are now giving us new opportunities to use big data that we already had, as well as unleash a whole lot of new use cases with new data types. With the increasing use of AI dealing with highly sensitive information such as healthcare, adequate security measures are required to securely store and transmit this information. This book provides a broader coverage of the basic aspects of advanced circuits design and applications. AI for Big Data-Based Engineering Applications from Security Perspectives is an integrated source that aims at understanding the basic concepts associated with the security of advanced circuits. The content includes theoretical frameworks and recent empirical findings in the field to understand the associated principles, key challenges, and recent real-time applications of advanced circuits, AI, and big data security. It illustrates the notions, models, and terminologies that are widely used in the area of Very Large Scale Integration (VLSI) circuits, security, identifies the existing security issues in the field, and evaluates the underlying factors that influence system security. This work emphasizes the idea of understanding the motivation behind advanced circuit design to establish the AI interface and to mitigate security attacks in a better way for big data. This book also outlines exciting areas of future research where already existing methodologies can be implemented. This material is suitable for students, researchers, and professionals with research interest in AI for big data–based engineering applications, faculty members across universities, and software developers.
Sustainable Energy and Fuels
Author: Piush Verma
Publisher: CRC Press
ISBN: 1040132251
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Sustainability refers to the concept that all people should be able to meet their basic needs indefinitely, without compromising future generations. Sustainability, in terms of energy, embraces the same principles. One day the world will run out of fossil fuels. We need to realize how important sustainable energy is and its significance when it comes to the future of our planet. Sustainable energy includes any energy source that cannot be depleted and can remain viable forever. It does not need to be renewed or replenished; sustainable energy meets our demand for energy without any risk of failing or running out. This is why sustainable energy is the answer to our energy needs. Furthermore, sustainable energy doesn’t harm the environment (or at most, there is a minimal risk), increase climate change, or cost a heavy price. Although there is a cost associated with creating and building ways to capture sustainable energy, the energy sources themselves are typically free. The main objective of this book is to provide an up-to-date review of conduction mechanisms, structure construction, operation, performance evaluation, and applications of various renewable energies and fuels. The current trend in innovation is likely to explore the potential to connect novel materials, design methods, and new techniques, which would allow us to maintain existing resources and develop new methods by employing smart technologies. This book provides a complete insight into recent advancements in nanomaterials, renewable energy design, and applications. The purpose of this book is to provide relevant theoretical frameworks that include materials, modeling, circuit design, and the latest developments in experimental work in the field of renewable energy and fuels. This book: Presents solar energy conversion including photovoltaics and artificial photosynthesis Discusses important topics such as energy management standards, biofuels, biorefining, and capacitive desalination Illustrates the importance of novel materials and process improvements for sustainable energy and fuels Includes research problem statements with specifications and commercially available industry data Covers catalysis for energy technologies, including the sustainable synthesis of fuels and chemicals, molecular, and bioinspired catalysis The text is primarily written for senior undergraduates and graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, environmental engineering, and renewable energy.
Publisher: CRC Press
ISBN: 1040132251
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Sustainability refers to the concept that all people should be able to meet their basic needs indefinitely, without compromising future generations. Sustainability, in terms of energy, embraces the same principles. One day the world will run out of fossil fuels. We need to realize how important sustainable energy is and its significance when it comes to the future of our planet. Sustainable energy includes any energy source that cannot be depleted and can remain viable forever. It does not need to be renewed or replenished; sustainable energy meets our demand for energy without any risk of failing or running out. This is why sustainable energy is the answer to our energy needs. Furthermore, sustainable energy doesn’t harm the environment (or at most, there is a minimal risk), increase climate change, or cost a heavy price. Although there is a cost associated with creating and building ways to capture sustainable energy, the energy sources themselves are typically free. The main objective of this book is to provide an up-to-date review of conduction mechanisms, structure construction, operation, performance evaluation, and applications of various renewable energies and fuels. The current trend in innovation is likely to explore the potential to connect novel materials, design methods, and new techniques, which would allow us to maintain existing resources and develop new methods by employing smart technologies. This book provides a complete insight into recent advancements in nanomaterials, renewable energy design, and applications. The purpose of this book is to provide relevant theoretical frameworks that include materials, modeling, circuit design, and the latest developments in experimental work in the field of renewable energy and fuels. This book: Presents solar energy conversion including photovoltaics and artificial photosynthesis Discusses important topics such as energy management standards, biofuels, biorefining, and capacitive desalination Illustrates the importance of novel materials and process improvements for sustainable energy and fuels Includes research problem statements with specifications and commercially available industry data Covers catalysis for energy technologies, including the sustainable synthesis of fuels and chemicals, molecular, and bioinspired catalysis The text is primarily written for senior undergraduates and graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, environmental engineering, and renewable energy.
Graphene Field-Effect Transistor Biosensors
Author: Shiyu Wang
Publisher: Springer Nature
ISBN: 9811612129
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
In this monograph, the graphene-based field-effect transistor (FET) biosensors are shown to be an emerging sensing platform. Divided into two parts the first set of chapters are devoted to basic knowledge of graphene, graphene FET and its biosensing. In the second part of this book the applications of graphene FET biosensors combined with various biotechnologies are presented. As well as discussing the existing technologies the authors also introduce their own ideas and concepts. Finally the remaining problems in graphene FET biosensors are discussed, along with proposed solutions and prospects for future applications. This monograph allows readers to grasp the basic knowledge and future direction of graphene-based FET biosensors.
Publisher: Springer Nature
ISBN: 9811612129
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
In this monograph, the graphene-based field-effect transistor (FET) biosensors are shown to be an emerging sensing platform. Divided into two parts the first set of chapters are devoted to basic knowledge of graphene, graphene FET and its biosensing. In the second part of this book the applications of graphene FET biosensors combined with various biotechnologies are presented. As well as discussing the existing technologies the authors also introduce their own ideas and concepts. Finally the remaining problems in graphene FET biosensors are discussed, along with proposed solutions and prospects for future applications. This monograph allows readers to grasp the basic knowledge and future direction of graphene-based FET biosensors.
Nanoscale Semiconductors
Author: Balwinder Raj
Publisher: CRC Press
ISBN: 1000637506
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
This reference text discusses conduction mechanism, structure construction, operation, performance evaluation and applications of nanoscale semiconductor materials and devices in VLSI circuits design. The text explains nano materials, devices, analysis of its design parameters to meet the sub-nano-regime challenges for CMOS devices. It discusses important topics including memory design and testing, fin field-effect transistor (FinFET), tunnel field-effect transistor (TFET) for sensors design, carbon nanotube field-effect transistor (CNTFET) for memory design, nanowire and nanoribbons, nano devices based low-power-circuit design, and microelectromechanical systems (MEMS) design. The book discusses nanoscale semiconductor materials, device models, and circuit design covers nanoscale semiconductor device structures and modeling discusses novel nano-semiconductor devices such as FinFET, CNTFET, and Nanowire covers power dissipation and reduction techniques Discussing innovative nanoscale semiconductor device structures and modeling, this text will be useful for graduate students, and academic researchers in diverse areas such as electrical engineering, electronics and communication engineering, nanoscience, and nanotechnology. It covers nano devices based low-power-circuit design, nanoscale devices based digital VLSI circuits, and novel devices based analog VLSI circuits design.
Publisher: CRC Press
ISBN: 1000637506
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
This reference text discusses conduction mechanism, structure construction, operation, performance evaluation and applications of nanoscale semiconductor materials and devices in VLSI circuits design. The text explains nano materials, devices, analysis of its design parameters to meet the sub-nano-regime challenges for CMOS devices. It discusses important topics including memory design and testing, fin field-effect transistor (FinFET), tunnel field-effect transistor (TFET) for sensors design, carbon nanotube field-effect transistor (CNTFET) for memory design, nanowire and nanoribbons, nano devices based low-power-circuit design, and microelectromechanical systems (MEMS) design. The book discusses nanoscale semiconductor materials, device models, and circuit design covers nanoscale semiconductor device structures and modeling discusses novel nano-semiconductor devices such as FinFET, CNTFET, and Nanowire covers power dissipation and reduction techniques Discussing innovative nanoscale semiconductor device structures and modeling, this text will be useful for graduate students, and academic researchers in diverse areas such as electrical engineering, electronics and communication engineering, nanoscience, and nanotechnology. It covers nano devices based low-power-circuit design, nanoscale devices based digital VLSI circuits, and novel devices based analog VLSI circuits design.