Model Theory for Beginners. 15 Lectures

Model Theory for Beginners. 15 Lectures PDF Author: Roman Kossak
Publisher:
ISBN: 9781848903616
Category :
Languages : en
Pages : 152

Get Book Here

Book Description
This book presents an introduction to model theory in 15 lectures. It concentrates on several key concepts: first-order definability, classification of complete types, elementary extensions, categoricity, automorphisms, and saturation; all illustrated with examples that require neither advanced alegbra nor set theory. A full proof of the compactness theorem for countable languages and its applications are given, followed by a discussion of the Ehrefeucht-Mostowski technique for constructing models admitting automorphisms. Additional topics include recursive saturation, nonstandard models of arithmetic, Abraham Robinson's model-theoretic proof of Tarski's theorem on undefinability of truth, and the proof of the Infinite Ramsey Theorem using an elementary extension of the standard model of arithmetic.

Model Theory for Beginners. 15 Lectures

Model Theory for Beginners. 15 Lectures PDF Author: Roman Kossak
Publisher:
ISBN: 9781848903616
Category :
Languages : en
Pages : 152

Get Book Here

Book Description
This book presents an introduction to model theory in 15 lectures. It concentrates on several key concepts: first-order definability, classification of complete types, elementary extensions, categoricity, automorphisms, and saturation; all illustrated with examples that require neither advanced alegbra nor set theory. A full proof of the compactness theorem for countable languages and its applications are given, followed by a discussion of the Ehrefeucht-Mostowski technique for constructing models admitting automorphisms. Additional topics include recursive saturation, nonstandard models of arithmetic, Abraham Robinson's model-theoretic proof of Tarski's theorem on undefinability of truth, and the proof of the Infinite Ramsey Theorem using an elementary extension of the standard model of arithmetic.

Mathematical Logic

Mathematical Logic PDF Author: Roman Kossak
Publisher: Springer Nature
ISBN: 3031562151
Category :
Languages : en
Pages : 256

Get Book Here

Book Description


A Shorter Model Theory

A Shorter Model Theory PDF Author: Wilfrid Hodges
Publisher: Cambridge University Press
ISBN: 9780521587136
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.

Model Theory and Topoi

Model Theory and Topoi PDF Author: F.W. Lawvere
Publisher: Springer
ISBN: 3540374957
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
A Collection of Lectures by Variuos Authors

Popular Lectures on Mathematical Logic

Popular Lectures on Mathematical Logic PDF Author: Hao Wang
Publisher: Courier Corporation
ISBN: 0486171043
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
Noted logician discusses both theoretical underpinnings and practical applications, exploring set theory, model theory, recursion theory and constructivism, proof theory, logic's relation to computer science, and other subjects. 1981 edition, reissued by Dover in 1993 with a new Postscript by the author.

Lectures on Petri Nets I: Basic Models

Lectures on Petri Nets I: Basic Models PDF Author: Wolfgang Reisig
Publisher: Springer Science & Business Media
ISBN: 9783540653066
Category : Computers
Languages : en
Pages : 714

Get Book Here

Book Description
The two-volume set originates from the Advanced Course on Petri Nets held in Dagstuhl, Germany in September 1996; beyond the lectures given there, additional chapters have been commissioned to give a well-balanced presentation of the state of the art in the area. Together with its companion volume "Lectures on Petri Nets II: Applications" this book is the actual reference for the area and addresses professionals, students, lecturers, and researchers who are - interested in systems design and would like to learn to use Petri nets familiar with subareas of the theory or its applications and wish to view the whole area - interested in learning about recent results presented within a unified framework - planning to apply Petri nets in practical situations - interested in the relationship of Petri nets to other models of concurrent systems.

Lectures on Algebraic Model Theory

Lectures on Algebraic Model Theory PDF Author: Bradd T. Hart
Publisher: American Mathematical Soc.
ISBN: 0821827057
Category : Mathematics
Languages : en
Pages : 121

Get Book Here

Book Description
This thin volume contains three sets of lecture notes, representing recent developments in differential scales, o-minimality, and tame convergence theory. The first lecture outlines the basics of differential fields, and then addresses topics like differential varieties and tangent bundles, Kolchin's logarithmic derivative, and Manin's construction. The second describes added exponentation, T-convexity and tame extensions, piecewise linearity, the Wilkie inequality, and the valuation property. And the third considers the structure and varieties of finite algebra. No index. c. Book News Inc.

Probability Theory

Probability Theory PDF Author:
Publisher: Allied Publishers
ISBN: 9788177644517
Category :
Languages : en
Pages : 436

Get Book Here

Book Description
Probability theory

Lectures on Invariant Theory

Lectures on Invariant Theory PDF Author: Igor Dolgachev
Publisher: Cambridge University Press
ISBN: 9780521525480
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.

Category Theory for Programmers (New Edition, Hardcover)

Category Theory for Programmers (New Edition, Hardcover) PDF Author: Bartosz Milewski
Publisher:
ISBN: 9780464243878
Category :
Languages : en
Pages :

Get Book Here

Book Description
Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might, therefore, come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well-structured programs are easier to understand and maintain and are less likely to contain bugs. Category theory provides the language to talk about structure and learning it will make you a better programmer.