Author: Bernard P. Zeigler
Publisher: Elsevier
ISBN: 0080550541
Category : Mathematics
Languages : en
Pages : 448
Book Description
Data Engineering has become a necessary and critical activity for business, engineering, and scientific organizations as the move to service oriented architecture and web services moves into full swing. Notably, the US Department of Defense is mandating that all of its agencies and contractors assume a defining presence on the Net-centric Global Information Grid. This book provides the first practical approach to data engineering and modeling, which supports interoperabililty with consumers of the data in a service- oriented architectures (SOAs). Although XML (eXtensible Modeling Language) is the lingua franca for such interoperability, it is not sufficient on its own. The approach in this book addresses critical objectives such as creating a single representation for multiple applications, designing models capable of supporting dynamic processes, and harmonizing legacy data models for web-based co-existence. The approach is based on the System Entity Structure (SES) which is a well-defined structure, methodology, and practical tool with all of the functionality of UML (Unified Modeling Language) and few of the drawbacks. The SES originated in the formal representation of hierarchical simulation models. So it provides an axiomatic formalism that enables automating the development of XML dtds and schemas, composition and decomposition of large data models, and analysis of commonality among structures. Zeigler and Hammond include a range of features to benefit their readers. Natural language, graphical and XML forms of SES specification are employed to allow mapping of legacy meta-data. Real world examples and case studies provide insight into data engineering and test evaluation in various application domains. Comparative information is provided on concepts of ontologies, modeling and simulation, introductory linguistic background, and support options enable programmers to work with advanced tools in the area. The website of the Arizona Center for Integrative Modeling and Simulation, co-founded by Zeigler in 2001, provides links to downloadable software to accompany the book. - The only practical guide to integrating XML and web services in data engineering - Introduces linguistic levels of interoperability for effective information exchange - Covers the interoperability standards mandated by national and international agencies - Complements Zeigler's classic THEORY OF MODELING AND SIMULATION
Modeling and Simulation-Based Data Engineering
Author: Bernard P. Zeigler
Publisher: Elsevier
ISBN: 0080550541
Category : Mathematics
Languages : en
Pages : 448
Book Description
Data Engineering has become a necessary and critical activity for business, engineering, and scientific organizations as the move to service oriented architecture and web services moves into full swing. Notably, the US Department of Defense is mandating that all of its agencies and contractors assume a defining presence on the Net-centric Global Information Grid. This book provides the first practical approach to data engineering and modeling, which supports interoperabililty with consumers of the data in a service- oriented architectures (SOAs). Although XML (eXtensible Modeling Language) is the lingua franca for such interoperability, it is not sufficient on its own. The approach in this book addresses critical objectives such as creating a single representation for multiple applications, designing models capable of supporting dynamic processes, and harmonizing legacy data models for web-based co-existence. The approach is based on the System Entity Structure (SES) which is a well-defined structure, methodology, and practical tool with all of the functionality of UML (Unified Modeling Language) and few of the drawbacks. The SES originated in the formal representation of hierarchical simulation models. So it provides an axiomatic formalism that enables automating the development of XML dtds and schemas, composition and decomposition of large data models, and analysis of commonality among structures. Zeigler and Hammond include a range of features to benefit their readers. Natural language, graphical and XML forms of SES specification are employed to allow mapping of legacy meta-data. Real world examples and case studies provide insight into data engineering and test evaluation in various application domains. Comparative information is provided on concepts of ontologies, modeling and simulation, introductory linguistic background, and support options enable programmers to work with advanced tools in the area. The website of the Arizona Center for Integrative Modeling and Simulation, co-founded by Zeigler in 2001, provides links to downloadable software to accompany the book. - The only practical guide to integrating XML and web services in data engineering - Introduces linguistic levels of interoperability for effective information exchange - Covers the interoperability standards mandated by national and international agencies - Complements Zeigler's classic THEORY OF MODELING AND SIMULATION
Publisher: Elsevier
ISBN: 0080550541
Category : Mathematics
Languages : en
Pages : 448
Book Description
Data Engineering has become a necessary and critical activity for business, engineering, and scientific organizations as the move to service oriented architecture and web services moves into full swing. Notably, the US Department of Defense is mandating that all of its agencies and contractors assume a defining presence on the Net-centric Global Information Grid. This book provides the first practical approach to data engineering and modeling, which supports interoperabililty with consumers of the data in a service- oriented architectures (SOAs). Although XML (eXtensible Modeling Language) is the lingua franca for such interoperability, it is not sufficient on its own. The approach in this book addresses critical objectives such as creating a single representation for multiple applications, designing models capable of supporting dynamic processes, and harmonizing legacy data models for web-based co-existence. The approach is based on the System Entity Structure (SES) which is a well-defined structure, methodology, and practical tool with all of the functionality of UML (Unified Modeling Language) and few of the drawbacks. The SES originated in the formal representation of hierarchical simulation models. So it provides an axiomatic formalism that enables automating the development of XML dtds and schemas, composition and decomposition of large data models, and analysis of commonality among structures. Zeigler and Hammond include a range of features to benefit their readers. Natural language, graphical and XML forms of SES specification are employed to allow mapping of legacy meta-data. Real world examples and case studies provide insight into data engineering and test evaluation in various application domains. Comparative information is provided on concepts of ontologies, modeling and simulation, introductory linguistic background, and support options enable programmers to work with advanced tools in the area. The website of the Arizona Center for Integrative Modeling and Simulation, co-founded by Zeigler in 2001, provides links to downloadable software to accompany the book. - The only practical guide to integrating XML and web services in data engineering - Introduces linguistic levels of interoperability for effective information exchange - Covers the interoperability standards mandated by national and international agencies - Complements Zeigler's classic THEORY OF MODELING AND SIMULATION
Data Teams
Author: Jesse Anderson
Publisher:
ISBN: 9781484262290
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781484262290
Category :
Languages : en
Pages :
Book Description
Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615
Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Data Engineering on Azure
Author: Vlad Riscutia
Publisher: Simon and Schuster
ISBN: 1617298921
Category : Computers
Languages : en
Pages : 334
Book Description
Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
Publisher: Simon and Schuster
ISBN: 1617298921
Category : Computers
Languages : en
Pages : 334
Book Description
Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
Data Engineering with Google Cloud Platform
Author: Adi Wijaya
Publisher: Packt Publishing Ltd
ISBN: 1800565062
Category : Computers
Languages : en
Pages : 440
Book Description
Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1800565062
Category : Computers
Languages : en
Pages : 440
Book Description
Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.
Data Engineering
Author: Brian Shive
Publisher: Technics Publications
ISBN: 9781935504603
Category : Computers
Languages : en
Pages : 0
Book Description
If you found a rusty old lamp on the beach, and upon touching it a genie appeared and granted you three wishes, what would you wish for? If you were wishing for a successful application development effort, most likely you would wish for accurate and robust data models, comprehensive data flow diagrams, and an acute understanding of human behavior. The wish for well-designed conceptual and logical data models means the requirements are well-understood and that the design has been built with flexibility and extensibility leading to high application agility and low maintenance costs. The wish for detailed data flow diagrams means a concrete understanding of the business' value chain exists and is documented. The wish to understand how we think means excellent team dynamics while analyzing, designing, and building the application. Why search the beaches for genie lamps when instead you can read this book? Learn the skills required for modeling, value chain analysis, and team dynamics by following the journey the author and son go through in establishing a profitable summer lemonade business. This business grew from season to season proportionately with his adoption of important engineering principles. All of the concepts and principles are explained in a novel format, so you will learn the important messages while enjoying the story that unfolds within these pages. The story is about an old man who has spent his life designing data models and databases and his newly adopted son. Father and son have a 54 year age difference that produces a large generation gap. The father attempts to narrow the generation gap by having his nine-year-old son earn his entertainment money. The son must run a summer business that turns a lemon grove into profits so he can buy new computers and games. As the son struggles for profits, it becomes increasingly clear that dad's career in information technology can provide critical leverage in achieving success in business. The failures and successes of the son's business over the summers are a microcosm of the ups and downs of many enterprises as they struggle to manage information technology.
Publisher: Technics Publications
ISBN: 9781935504603
Category : Computers
Languages : en
Pages : 0
Book Description
If you found a rusty old lamp on the beach, and upon touching it a genie appeared and granted you three wishes, what would you wish for? If you were wishing for a successful application development effort, most likely you would wish for accurate and robust data models, comprehensive data flow diagrams, and an acute understanding of human behavior. The wish for well-designed conceptual and logical data models means the requirements are well-understood and that the design has been built with flexibility and extensibility leading to high application agility and low maintenance costs. The wish for detailed data flow diagrams means a concrete understanding of the business' value chain exists and is documented. The wish to understand how we think means excellent team dynamics while analyzing, designing, and building the application. Why search the beaches for genie lamps when instead you can read this book? Learn the skills required for modeling, value chain analysis, and team dynamics by following the journey the author and son go through in establishing a profitable summer lemonade business. This business grew from season to season proportionately with his adoption of important engineering principles. All of the concepts and principles are explained in a novel format, so you will learn the important messages while enjoying the story that unfolds within these pages. The story is about an old man who has spent his life designing data models and databases and his newly adopted son. Father and son have a 54 year age difference that produces a large generation gap. The father attempts to narrow the generation gap by having his nine-year-old son earn his entertainment money. The son must run a summer business that turns a lemon grove into profits so he can buy new computers and games. As the son struggles for profits, it becomes increasingly clear that dad's career in information technology can provide critical leverage in achieving success in business. The failures and successes of the son's business over the summers are a microcosm of the ups and downs of many enterprises as they struggle to manage information technology.
An Introduction to Agile Data Engineering Using Data Vault 2. 0
Author: Kent Graziano
Publisher:
ISBN: 9781796584936
Category :
Languages : en
Pages : 50
Book Description
The world of data warehousing is changing. Big Data & Agile are hot topics. But companies still need to collect, report, and analyze their data. Usually this requires some form of data warehousing or business intelligence system. So how do we do that in the modern IT landscape in a way that allows us to be agile and either deal directly or indirectly with unstructured and semi structured data?The Data Vault System of Business Intelligence provides a method and approach to modeling your enterprise data warehouse (EDW) that is agile, flexible, and scalable. This book will give you a short introduction to Agile Data Engineering for Data Warehousing and Data Vault 2.0. I will explain why you should be trying to become Agile, some of the history and rationale for Data Vault 2.0, and then show you the basics for how to build a data warehouse model using the Data Vault 2.0 standards.In addition, I will cover some details about the Business Data Vault (what it is) and then how to build a virtual Information Mart off your Data Vault and Business Vault using the Data Vault 2.0 architecture.So if you want to start learning about Agile Data Engineering with Data Vault 2.0, this book is for you.
Publisher:
ISBN: 9781796584936
Category :
Languages : en
Pages : 50
Book Description
The world of data warehousing is changing. Big Data & Agile are hot topics. But companies still need to collect, report, and analyze their data. Usually this requires some form of data warehousing or business intelligence system. So how do we do that in the modern IT landscape in a way that allows us to be agile and either deal directly or indirectly with unstructured and semi structured data?The Data Vault System of Business Intelligence provides a method and approach to modeling your enterprise data warehouse (EDW) that is agile, flexible, and scalable. This book will give you a short introduction to Agile Data Engineering for Data Warehousing and Data Vault 2.0. I will explain why you should be trying to become Agile, some of the history and rationale for Data Vault 2.0, and then show you the basics for how to build a data warehouse model using the Data Vault 2.0 standards.In addition, I will cover some details about the Business Data Vault (what it is) and then how to build a virtual Information Mart off your Data Vault and Business Vault using the Data Vault 2.0 architecture.So if you want to start learning about Agile Data Engineering with Data Vault 2.0, this book is for you.
Feature Engineering and Selection
Author: Max Kuhn
Publisher: CRC Press
ISBN: 1351609467
Category : Business & Economics
Languages : en
Pages : 266
Book Description
The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.
Publisher: CRC Press
ISBN: 1351609467
Category : Business & Economics
Languages : en
Pages : 266
Book Description
The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.
Data Engineering with Apache Spark, Delta Lake, and Lakehouse
Author: Manoj Kukreja
Publisher: Packt Publishing Ltd
ISBN: 1801074321
Category : Computers
Languages : en
Pages : 480
Book Description
Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
Publisher: Packt Publishing Ltd
ISBN: 1801074321
Category : Computers
Languages : en
Pages : 480
Book Description
Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
Agile Data Warehouse Design
Author: Lawrence Corr
Publisher: DecisionOne Consulting
ISBN: 0956817203
Category : Business & Economics
Languages : en
Pages : 330
Book Description
Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.
Publisher: DecisionOne Consulting
ISBN: 0956817203
Category : Business & Economics
Languages : en
Pages : 330
Book Description
Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.