Author: Dan A. Simovici
Publisher: Springer Science & Business Media
ISBN: 1848002017
Category : Computers
Languages : en
Pages : 611
Book Description
This volume was born from the experience of the authors as researchers and educators,whichsuggeststhatmanystudentsofdataminingarehandicapped in their research by the lack of a formal, systematic education in its mat- matics. The data mining literature contains many excellent titles that address the needs of users with a variety of interests ranging from decision making to p- tern investigation in biological data. However, these books do not deal with the mathematical tools that are currently needed by data mining researchers and doctoral students. We felt it timely to produce a book that integrates the mathematics of data mining with its applications. We emphasize that this book is about mathematical tools for data mining and not about data mining itself; despite this, a substantial amount of applications of mathematical c- cepts in data mining are presented. The book is intended as a reference for the working data miner. In our opinion, three areas of mathematics are vital for data mining: set theory,includingpartially orderedsetsandcombinatorics;linear algebra,with its many applications in principal component analysis and neural networks; and probability theory, which plays a foundational role in statistics, machine learning and data mining. Thisvolumeisdedicatedtothestudyofset-theoreticalfoundationsofdata mining. Two further volumes are contemplated that will cover linear algebra and probability theory. The ?rst part of this book, dedicated to set theory, begins with a study of functionsandrelations.Applicationsofthesefundamentalconceptstosuch- sues as equivalences and partitions are discussed. Also, we prepare the ground for the following volumes by discussing indicator functions, ?elds and?-?elds, and other concepts.
Mathematical Tools for Data Mining
Author: Dan A. Simovici
Publisher: Springer Science & Business Media
ISBN: 1848002017
Category : Computers
Languages : en
Pages : 611
Book Description
This volume was born from the experience of the authors as researchers and educators,whichsuggeststhatmanystudentsofdataminingarehandicapped in their research by the lack of a formal, systematic education in its mat- matics. The data mining literature contains many excellent titles that address the needs of users with a variety of interests ranging from decision making to p- tern investigation in biological data. However, these books do not deal with the mathematical tools that are currently needed by data mining researchers and doctoral students. We felt it timely to produce a book that integrates the mathematics of data mining with its applications. We emphasize that this book is about mathematical tools for data mining and not about data mining itself; despite this, a substantial amount of applications of mathematical c- cepts in data mining are presented. The book is intended as a reference for the working data miner. In our opinion, three areas of mathematics are vital for data mining: set theory,includingpartially orderedsetsandcombinatorics;linear algebra,with its many applications in principal component analysis and neural networks; and probability theory, which plays a foundational role in statistics, machine learning and data mining. Thisvolumeisdedicatedtothestudyofset-theoreticalfoundationsofdata mining. Two further volumes are contemplated that will cover linear algebra and probability theory. The ?rst part of this book, dedicated to set theory, begins with a study of functionsandrelations.Applicationsofthesefundamentalconceptstosuch- sues as equivalences and partitions are discussed. Also, we prepare the ground for the following volumes by discussing indicator functions, ?elds and?-?elds, and other concepts.
Publisher: Springer Science & Business Media
ISBN: 1848002017
Category : Computers
Languages : en
Pages : 611
Book Description
This volume was born from the experience of the authors as researchers and educators,whichsuggeststhatmanystudentsofdataminingarehandicapped in their research by the lack of a formal, systematic education in its mat- matics. The data mining literature contains many excellent titles that address the needs of users with a variety of interests ranging from decision making to p- tern investigation in biological data. However, these books do not deal with the mathematical tools that are currently needed by data mining researchers and doctoral students. We felt it timely to produce a book that integrates the mathematics of data mining with its applications. We emphasize that this book is about mathematical tools for data mining and not about data mining itself; despite this, a substantial amount of applications of mathematical c- cepts in data mining are presented. The book is intended as a reference for the working data miner. In our opinion, three areas of mathematics are vital for data mining: set theory,includingpartially orderedsetsandcombinatorics;linear algebra,with its many applications in principal component analysis and neural networks; and probability theory, which plays a foundational role in statistics, machine learning and data mining. Thisvolumeisdedicatedtothestudyofset-theoreticalfoundationsofdata mining. Two further volumes are contemplated that will cover linear algebra and probability theory. The ?rst part of this book, dedicated to set theory, begins with a study of functionsandrelations.Applicationsofthesefundamentalconceptstosuch- sues as equivalences and partitions are discussed. Also, we prepare the ground for the following volumes by discussing indicator functions, ?elds and?-?elds, and other concepts.
Underground Mathematics
Author: Thomas Morel
Publisher: Cambridge University Press
ISBN: 1009267302
Category : History
Languages : en
Pages : 305
Book Description
History of the development of practical mathematics in early modern Europe through the practice of mining.
Publisher: Cambridge University Press
ISBN: 1009267302
Category : History
Languages : en
Pages : 305
Book Description
History of the development of practical mathematics in early modern Europe through the practice of mining.
Mathematical Analysis For Machine Learning And Data Mining
Author: Dan A Simovici
Publisher: World Scientific
ISBN: 9813229705
Category : Computers
Languages : en
Pages : 985
Book Description
This compendium provides a self-contained introduction to mathematical analysis in the field of machine learning and data mining. The mathematical analysis component of the typical mathematical curriculum for computer science students omits these very important ideas and techniques which are indispensable for approaching specialized area of machine learning centered around optimization such as support vector machines, neural networks, various types of regression, feature selection, and clustering. The book is of special interest to researchers and graduate students who will benefit from these application areas discussed in the book. Related Link(s)
Publisher: World Scientific
ISBN: 9813229705
Category : Computers
Languages : en
Pages : 985
Book Description
This compendium provides a self-contained introduction to mathematical analysis in the field of machine learning and data mining. The mathematical analysis component of the typical mathematical curriculum for computer science students omits these very important ideas and techniques which are indispensable for approaching specialized area of machine learning centered around optimization such as support vector machines, neural networks, various types of regression, feature selection, and clustering. The book is of special interest to researchers and graduate students who will benefit from these application areas discussed in the book. Related Link(s)
Data Mining and Mathematical Programming
Author: Panos M. Pardalos
Publisher: American Mathematical Soc.
ISBN: 9780821870402
Category : Computers
Languages : en
Pages : 252
Book Description
Data mining aims at finding interesting, useful or profitable information in very large databases. The enormous increase in the size of available scientific and commercial databases (data avalanche) as well as the continuing and exponential growth in performance of present day computers make data mining a very active field. In many cases, the burgeoning volume of data sets has grown so large that it threatens to overwhelm rather than enlighten scientists. Therefore, traditional methods are revised and streamlined, complemented by many new methods to address challenging new problems. Mathematical Programming plays a key role in this endeavor. It helps us to formulate precise objectives (e.g., a clustering criterion or a measure of discrimination) as well as the constraints imposed on the solution (e.g., find a partition, a covering or a hierarchy in clustering). It also provides powerful mathematical tools to build highly performing exact or approximate algorithms. This book is based on lectures presented at the workshop on "Data Mining and Mathematical Programming" (October 10-13, 2006, Montreal) and will be a valuable scientific source of information to faculty, students, and researchers in optimization, data analysis and data mining, as well as people working in computer science, engineering and applied mathematics.
Publisher: American Mathematical Soc.
ISBN: 9780821870402
Category : Computers
Languages : en
Pages : 252
Book Description
Data mining aims at finding interesting, useful or profitable information in very large databases. The enormous increase in the size of available scientific and commercial databases (data avalanche) as well as the continuing and exponential growth in performance of present day computers make data mining a very active field. In many cases, the burgeoning volume of data sets has grown so large that it threatens to overwhelm rather than enlighten scientists. Therefore, traditional methods are revised and streamlined, complemented by many new methods to address challenging new problems. Mathematical Programming plays a key role in this endeavor. It helps us to formulate precise objectives (e.g., a clustering criterion or a measure of discrimination) as well as the constraints imposed on the solution (e.g., find a partition, a covering or a hierarchy in clustering). It also provides powerful mathematical tools to build highly performing exact or approximate algorithms. This book is based on lectures presented at the workshop on "Data Mining and Mathematical Programming" (October 10-13, 2006, Montreal) and will be a valuable scientific source of information to faculty, students, and researchers in optimization, data analysis and data mining, as well as people working in computer science, engineering and applied mathematics.
Mathematical Foundations for Data Analysis
Author: Jeff M. Phillips
Publisher: Springer Nature
ISBN: 3030623416
Category : Mathematics
Languages : en
Pages : 299
Book Description
This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
Publisher: Springer Nature
ISBN: 3030623416
Category : Mathematics
Languages : en
Pages : 299
Book Description
This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
Industrial & Mining Standard
Author:
Publisher:
ISBN:
Category : Mineral industries
Languages : en
Pages : 680
Book Description
Publisher:
ISBN:
Category : Mineral industries
Languages : en
Pages : 680
Book Description
Mining Complex Networks
Author: Bogumil Kaminski
Publisher: CRC Press
ISBN: 1000515907
Category : Mathematics
Languages : en
Pages : 228
Book Description
This book concentrates on mining networks, a subfield within data science. Data science uses scientific and computational tools to extract valuable knowledge from large data sets. Once data is processed and cleaned, it is analyzed and presented to support decision-making processes. Data science and machine learning tools have become widely used in companies of all sizes. Networks are often large-scale, decentralized, and evolve dynamically over time. Mining complex networks aim to understand the principles governing the organization and the behavior of such networks is crucial for a broad range of fields of study. Here are a few selected typical applications of mining networks: Community detection (which users on some social media platforms are close friends). Link prediction (who is likely to connect to whom on such platforms). Node attribute prediction (what advertisement should be shown to a given user of a particular platform to match their interests). Influential node detection (which social media users would be the best ambassadors of a specific product). This textbook is suitable for an upper-year undergraduate course or a graduate course in programs such as data science, mathematics, computer science, business, engineering, physics, statistics, and social science. This book can be successfully used by all enthusiasts of data science at various levels of sophistication to expand their knowledge or consider changing their career path. Jupiter notebooks (in Python and Julia) accompany the book and can be accessed on https://www.ryerson.ca/mining-complex-networks/. These not only contain all the experiments presented in the book, but also include additional material. Bogumił Kamiński is the Chairman of the Scientific Council for the Discipline of Economics and Finance at SGH Warsaw School of Economics. He is also an Adjunct Professor at the Data Science Laboratory at Ryerson University. Bogumił is an expert in applications of mathematical modeling to solving complex real-life problems. He is also a substantial open-source contributor to the development of the Julia language and its package ecosystem. Paweł Prałat is a Professor of Mathematics in Ryerson University, whose main research interests are in random graph theory, especially in modeling and mining complex networks. He is the Director of Fields-CQAM Lab on Computational Methods in Industrial Mathematics in The Fields Institute for Research in Mathematical Sciences and has pursued collaborations with various industry partners as well as the Government of Canada. He has written over 170 papers and three books with 130 plus collaborators. François Théberge holds a B.Sc. degree in applied mathematics from the University of Ottawa, a M.Sc. in telecommunications from INRS and a PhD in electrical engineering from McGill University. He has been employed by the Government of Canada since 1996 where he was involved in the creation of the data science team as well as the research group now known as the Tutte Institute for Mathematics and Computing. He also holds an adjunct professorial position in the Department of Mathematics and Statistics at the University of Ottawa. His current interests include relational-data mining and deep learning.
Publisher: CRC Press
ISBN: 1000515907
Category : Mathematics
Languages : en
Pages : 228
Book Description
This book concentrates on mining networks, a subfield within data science. Data science uses scientific and computational tools to extract valuable knowledge from large data sets. Once data is processed and cleaned, it is analyzed and presented to support decision-making processes. Data science and machine learning tools have become widely used in companies of all sizes. Networks are often large-scale, decentralized, and evolve dynamically over time. Mining complex networks aim to understand the principles governing the organization and the behavior of such networks is crucial for a broad range of fields of study. Here are a few selected typical applications of mining networks: Community detection (which users on some social media platforms are close friends). Link prediction (who is likely to connect to whom on such platforms). Node attribute prediction (what advertisement should be shown to a given user of a particular platform to match their interests). Influential node detection (which social media users would be the best ambassadors of a specific product). This textbook is suitable for an upper-year undergraduate course or a graduate course in programs such as data science, mathematics, computer science, business, engineering, physics, statistics, and social science. This book can be successfully used by all enthusiasts of data science at various levels of sophistication to expand their knowledge or consider changing their career path. Jupiter notebooks (in Python and Julia) accompany the book and can be accessed on https://www.ryerson.ca/mining-complex-networks/. These not only contain all the experiments presented in the book, but also include additional material. Bogumił Kamiński is the Chairman of the Scientific Council for the Discipline of Economics and Finance at SGH Warsaw School of Economics. He is also an Adjunct Professor at the Data Science Laboratory at Ryerson University. Bogumił is an expert in applications of mathematical modeling to solving complex real-life problems. He is also a substantial open-source contributor to the development of the Julia language and its package ecosystem. Paweł Prałat is a Professor of Mathematics in Ryerson University, whose main research interests are in random graph theory, especially in modeling and mining complex networks. He is the Director of Fields-CQAM Lab on Computational Methods in Industrial Mathematics in The Fields Institute for Research in Mathematical Sciences and has pursued collaborations with various industry partners as well as the Government of Canada. He has written over 170 papers and three books with 130 plus collaborators. François Théberge holds a B.Sc. degree in applied mathematics from the University of Ottawa, a M.Sc. in telecommunications from INRS and a PhD in electrical engineering from McGill University. He has been employed by the Government of Canada since 1996 where he was involved in the creation of the data science team as well as the research group now known as the Tutte Institute for Mathematics and Computing. He also holds an adjunct professorial position in the Department of Mathematics and Statistics at the University of Ottawa. His current interests include relational-data mining and deep learning.
Contemporary Perspectives in Data Mining, Volume 2
Author: Kenneth D. Lawrence
Publisher: IAP
ISBN: 1681230895
Category : Mathematics
Languages : en
Pages : 237
Book Description
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in marketing (customer loyalty, identifying profitable customers, instore promotions, e-commerce populations); in business (teaching data mining, efficiency of the Chinese automobile industry, moderate asset allocation funds); and techniques (veterinary predictive models, data integrity in the cloud, irregular pattern detection in a mobility network and road safety modeling.)
Publisher: IAP
ISBN: 1681230895
Category : Mathematics
Languages : en
Pages : 237
Book Description
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in marketing (customer loyalty, identifying profitable customers, instore promotions, e-commerce populations); in business (teaching data mining, efficiency of the Chinese automobile industry, moderate asset allocation funds); and techniques (veterinary predictive models, data integrity in the cloud, irregular pattern detection in a mobility network and road safety modeling.)
Mines Statement
Author: New Zealand. Mines Department
Publisher:
ISBN:
Category : Mines and mineral resources
Languages : en
Pages : 482
Book Description
Publisher:
ISBN:
Category : Mines and mineral resources
Languages : en
Pages : 482
Book Description
Mining Engineering
Author:
Publisher:
ISBN:
Category : Coal mines and mining
Languages : en
Pages : 296
Book Description
Publisher:
ISBN:
Category : Coal mines and mining
Languages : en
Pages : 296
Book Description