Author: Maurizio Casalino
Publisher: MDPI
ISBN: 3036500448
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
Silicon (Si) technologies provide an excellent platform for the design of microsystems where photonic and microelectronic functionalities are monolithically integrated on the same substrate. In recent years, a variety of passive and active Si photonic devices have been developed, and among them, photodetectors have attracted particular interest from the scientific community. Si photodiodes are typically designed to operate at visible wavelengths, but, unfortunately, their employment in the infrared (IR) range is limited due to the neglectable Si absorption over 1100 nm, even though the use of germanium (Ge) grown on Si has historically allowed operations to be extended up to 1550 nm. In recent years, significant progress has been achieved both by improving the performance of Si-based photodetectors in the visible range and by extending their operation to infrared wavelengths. Near-infrared (NIR) SiGe photodetectors have been demonstrated to have a “zero change” CMOS process flow, while the investigation of new effects and structures has shown that an all-Si approach could be a viable option to construct devices comparable with Ge technology. In addition, the capability to integrate new emerging 2D and 3D materials with Si, together with the capability of manufacturing devices at the nanometric scale, has led to the development of new device families with unexpected performance. Accordingly, this Special Issue of Micromachines seeks to showcase research papers, short communications, and review articles that show the most recent advances in the field of silicon photodetectors and their respective applications.
Miniaturized Silicon Photodetectors
Author: Maurizio Casalino
Publisher: MDPI
ISBN: 3036500448
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
Silicon (Si) technologies provide an excellent platform for the design of microsystems where photonic and microelectronic functionalities are monolithically integrated on the same substrate. In recent years, a variety of passive and active Si photonic devices have been developed, and among them, photodetectors have attracted particular interest from the scientific community. Si photodiodes are typically designed to operate at visible wavelengths, but, unfortunately, their employment in the infrared (IR) range is limited due to the neglectable Si absorption over 1100 nm, even though the use of germanium (Ge) grown on Si has historically allowed operations to be extended up to 1550 nm. In recent years, significant progress has been achieved both by improving the performance of Si-based photodetectors in the visible range and by extending their operation to infrared wavelengths. Near-infrared (NIR) SiGe photodetectors have been demonstrated to have a “zero change” CMOS process flow, while the investigation of new effects and structures has shown that an all-Si approach could be a viable option to construct devices comparable with Ge technology. In addition, the capability to integrate new emerging 2D and 3D materials with Si, together with the capability of manufacturing devices at the nanometric scale, has led to the development of new device families with unexpected performance. Accordingly, this Special Issue of Micromachines seeks to showcase research papers, short communications, and review articles that show the most recent advances in the field of silicon photodetectors and their respective applications.
Publisher: MDPI
ISBN: 3036500448
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
Silicon (Si) technologies provide an excellent platform for the design of microsystems where photonic and microelectronic functionalities are monolithically integrated on the same substrate. In recent years, a variety of passive and active Si photonic devices have been developed, and among them, photodetectors have attracted particular interest from the scientific community. Si photodiodes are typically designed to operate at visible wavelengths, but, unfortunately, their employment in the infrared (IR) range is limited due to the neglectable Si absorption over 1100 nm, even though the use of germanium (Ge) grown on Si has historically allowed operations to be extended up to 1550 nm. In recent years, significant progress has been achieved both by improving the performance of Si-based photodetectors in the visible range and by extending their operation to infrared wavelengths. Near-infrared (NIR) SiGe photodetectors have been demonstrated to have a “zero change” CMOS process flow, while the investigation of new effects and structures has shown that an all-Si approach could be a viable option to construct devices comparable with Ge technology. In addition, the capability to integrate new emerging 2D and 3D materials with Si, together with the capability of manufacturing devices at the nanometric scale, has led to the development of new device families with unexpected performance. Accordingly, this Special Issue of Micromachines seeks to showcase research papers, short communications, and review articles that show the most recent advances in the field of silicon photodetectors and their respective applications.
Photodetectors
Author:
Publisher: Woodhead Publishing
ISBN: 1782424687
Category : Science
Languages : en
Pages : 551
Book Description
Photodetectors: Materials, Devices and Applications discusses the devices that convert light to electrical signals, key components in communication, computation, and imaging systems. In recent years, there has been significant improvement in photodetector performance, and this important book reviews some of the key advances in the field. Part one covers materials, detector types, and devices, and includes discussion of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, low-temperature grown gallium arsenide, plasmonic, Si photomultiplier tubes, and organic photodetectors, while part two focuses on important applications of photodetectors, including microwave photonics, communications, high-speed single photon detection, THz detection, resonant cavity enhanced photodetection, photo-capacitors and imaging. Reviews materials, detector types and devices Addresses fabrication techniques, and the advantages and limitations and different types of photodetector Considers a range of application for this important technology Includes discussions of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, and more
Publisher: Woodhead Publishing
ISBN: 1782424687
Category : Science
Languages : en
Pages : 551
Book Description
Photodetectors: Materials, Devices and Applications discusses the devices that convert light to electrical signals, key components in communication, computation, and imaging systems. In recent years, there has been significant improvement in photodetector performance, and this important book reviews some of the key advances in the field. Part one covers materials, detector types, and devices, and includes discussion of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, low-temperature grown gallium arsenide, plasmonic, Si photomultiplier tubes, and organic photodetectors, while part two focuses on important applications of photodetectors, including microwave photonics, communications, high-speed single photon detection, THz detection, resonant cavity enhanced photodetection, photo-capacitors and imaging. Reviews materials, detector types and devices Addresses fabrication techniques, and the advantages and limitations and different types of photodetector Considers a range of application for this important technology Includes discussions of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, and more
MOEMS and Miniaturized Systems
Author:
Publisher:
ISBN:
Category : Microelectromechanical systems
Languages : en
Pages : 388
Book Description
Publisher:
ISBN:
Category : Microelectromechanical systems
Languages : en
Pages : 388
Book Description
Photodetectors
Author: Sanka Gateva
Publisher: BoD – Books on Demand
ISBN: 953510358X
Category : Technology & Engineering
Languages : en
Pages : 474
Book Description
In this book some recent advances in development of photodetectors and photodetection systems for specific applications are included. In the first section of the book nine different types of photodetectors and their characteristics are presented. Next, some theoretical aspects and simulations are discussed. The last eight chapters are devoted to the development of photodetection systems for imaging, particle size analysis, transfers of time, measurement of vibrations, magnetic field, polarization of light, and particle energy. The book is addressed to students, engineers, and researchers working in the field of photonics and advanced technologies.
Publisher: BoD – Books on Demand
ISBN: 953510358X
Category : Technology & Engineering
Languages : en
Pages : 474
Book Description
In this book some recent advances in development of photodetectors and photodetection systems for specific applications are included. In the first section of the book nine different types of photodetectors and their characteristics are presented. Next, some theoretical aspects and simulations are discussed. The last eight chapters are devoted to the development of photodetection systems for imaging, particle size analysis, transfers of time, measurement of vibrations, magnetic field, polarization of light, and particle energy. The book is addressed to students, engineers, and researchers working in the field of photonics and advanced technologies.
Internet of Things From Hype to Reality
Author: Ammar Rayes
Publisher: Springer
ISBN: 3319448609
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
This book comprehensively describes an end-to-end Internet of Things (IoT) architecture that is comprised of devices, network, compute, storage, platform, applications along with management and security components. It is organized into five main parts, comprising of a total of 11 chapters. Part I presents a generic IoT reference model to establish a common vocabulary for IoT solutions. This includes a detailed description of the Internet protocol layers and the Things (sensors and actuators) as well as the key business drivers to realize the IoT vision. Part II focuses on the IoT requirements that impact networking protocols and provides a layer-by-layer walkthrough of the protocol stack with emphasis on industry progress and key gaps. Part III introduces the concept of Fog computing and describes the drivers for the technology, its constituent elements, and how it relates and differs from Cloud computing. Part IV discusses the IoT services platform, the cornerstone of the solution followed by the Security functions and requirements. Finally, Part V provides a treatment of the topic of connected ecosystems in IoT along with practical applications. It then surveys the latest IoT standards and discusses the pivotal role of open source in IoT. “Faculty will find well-crafted questions and answers at the end of each chapter, suitable for review and in classroom discussion topics. In addition, the material in the book can be used by engineers and technical leaders looking to gain a deep technical understanding of IoT, as well as by managers and business leaders looking to gain a competitive edge and understand innovation opportunities for the future.” Dr. Jim Spohrer, IBM “This text provides a very compelling study of the IoT space and achieves a very good balance between engineering/technology focus and business context. As such, it is highly-recommended for anyone interested in this rapidly-expanding field and will have broad appeal to a wide cross-section of readers, i.e., including engineering professionals, business analysts, university students, and professors.” Professor Nasir Ghani, University of South Florida
Publisher: Springer
ISBN: 3319448609
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
This book comprehensively describes an end-to-end Internet of Things (IoT) architecture that is comprised of devices, network, compute, storage, platform, applications along with management and security components. It is organized into five main parts, comprising of a total of 11 chapters. Part I presents a generic IoT reference model to establish a common vocabulary for IoT solutions. This includes a detailed description of the Internet protocol layers and the Things (sensors and actuators) as well as the key business drivers to realize the IoT vision. Part II focuses on the IoT requirements that impact networking protocols and provides a layer-by-layer walkthrough of the protocol stack with emphasis on industry progress and key gaps. Part III introduces the concept of Fog computing and describes the drivers for the technology, its constituent elements, and how it relates and differs from Cloud computing. Part IV discusses the IoT services platform, the cornerstone of the solution followed by the Security functions and requirements. Finally, Part V provides a treatment of the topic of connected ecosystems in IoT along with practical applications. It then surveys the latest IoT standards and discusses the pivotal role of open source in IoT. “Faculty will find well-crafted questions and answers at the end of each chapter, suitable for review and in classroom discussion topics. In addition, the material in the book can be used by engineers and technical leaders looking to gain a deep technical understanding of IoT, as well as by managers and business leaders looking to gain a competitive edge and understand innovation opportunities for the future.” Dr. Jim Spohrer, IBM “This text provides a very compelling study of the IoT space and achieves a very good balance between engineering/technology focus and business context. As such, it is highly-recommended for anyone interested in this rapidly-expanding field and will have broad appeal to a wide cross-section of readers, i.e., including engineering professionals, business analysts, university students, and professors.” Professor Nasir Ghani, University of South Florida
Microfluidic Technologies for Miniaturized Analysis Systems
Author: Steffen Hardt
Publisher: Springer Science & Business Media
ISBN: 0387684247
Category : Technology & Engineering
Languages : en
Pages : 630
Book Description
This book addresses Lab-on-a-Chip devices. It focuses on microfluidic technologies that have emerged in the past decade. Coverage presents a comprehensive listing of the most promising microfluidic technologies in the Lab-on-a-Chip field. It also details technologies that can be viewed as toolboxes needed to set up complex Lab-on-a-Chip systems.
Publisher: Springer Science & Business Media
ISBN: 0387684247
Category : Technology & Engineering
Languages : en
Pages : 630
Book Description
This book addresses Lab-on-a-Chip devices. It focuses on microfluidic technologies that have emerged in the past decade. Coverage presents a comprehensive listing of the most promising microfluidic technologies in the Lab-on-a-Chip field. It also details technologies that can be viewed as toolboxes needed to set up complex Lab-on-a-Chip systems.
Proceedings of the 2009 Annual Symposium of the IEEE Photonics Benelux Chapter
Author: S. Beri
Publisher: ASP / VUBPRESS / UPA
ISBN: 9054876506
Category : Literary Criticism
Languages : en
Pages : 248
Book Description
Containing the proceedings of an annual symposium, this collection of research articles explores the role of optics in lasers, communication systems, sensors, and quantum electronics.
Publisher: ASP / VUBPRESS / UPA
ISBN: 9054876506
Category : Literary Criticism
Languages : en
Pages : 248
Book Description
Containing the proceedings of an annual symposium, this collection of research articles explores the role of optics in lasers, communication systems, sensors, and quantum electronics.
Introduction to Fluorescence Sensing
Author: Alexander P. Demchenko
Publisher: Springer Nature
ISBN: 3030601552
Category : Medical
Languages : en
Pages : 673
Book Description
This book provides systematic knowledge of basic principles in the design of fluorescence sensing and imaging techniques together with critical analysis of recent developments. Fluorescence is the most popular technique in chemical and biological sensing because of its ultimate sensitivity, high temporal and spatial resolution and versatility that enables imaging within the living cells. It develops rapidly in the directions of constructing new molecular recognition units, new fluorescence reporters and in improving sensitivity of response up to detection of single molecules. Its application areas range from control of industrial processes to environment monitoring and clinical diagnostics. Being a guide for students and young researchers, it also addresses professionals involved in active basic and applied research. Making a strong link between education, research and product development, this book discusses prospects for future progress.
Publisher: Springer Nature
ISBN: 3030601552
Category : Medical
Languages : en
Pages : 673
Book Description
This book provides systematic knowledge of basic principles in the design of fluorescence sensing and imaging techniques together with critical analysis of recent developments. Fluorescence is the most popular technique in chemical and biological sensing because of its ultimate sensitivity, high temporal and spatial resolution and versatility that enables imaging within the living cells. It develops rapidly in the directions of constructing new molecular recognition units, new fluorescence reporters and in improving sensitivity of response up to detection of single molecules. Its application areas range from control of industrial processes to environment monitoring and clinical diagnostics. Being a guide for students and young researchers, it also addresses professionals involved in active basic and applied research. Making a strong link between education, research and product development, this book discusses prospects for future progress.
Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems
Author: Sabu Thomas
Publisher: Elsevier
ISBN: 0128237287
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems outlines the basic principles of miniaturized analytical devices, such as spectrometric, separation, imaging and electrochemical miniaturized instruments. Concepts such as smartphone-enabled miniaturized detection systems and micro/nanomachines are also reviewed. Subsequent chapters explore the emerging application of these mobile devices for miniaturized analysis in various fields, including medicine and biomedicine, environmental chemistry, food chemistry, and forensic chemistry. This is an important reference source for materials scientists and engineers wanting to understand how miniaturization techniques are being used to create a range of efficient, sustainable electronic and optical devices. Miniaturization describes the concept of manufacturing increasingly smaller mechanical, optical, and electronic products and devices. These smaller instruments can be used to produce micro- and nanoscale components required for analytical procedures. A variety of micro/nanoscale materials have been synthesized and used in analytical procedures, such as sensing materials, sorbents, adsorbents, catalysts, and reactors. The miniaturization of analytical instruments can be applied to the different steps of analytical procedures, such as sample preparation, analytical separation, and detection, reducing the total cost of manufacturing the instruments and the needed reagents and organic solvents. - Outlines how miniaturization techniques can be used to create new optical and electronic micro- and nanodevices - Explores major application areas, including biomedicine, environmental science and security - Assesses the major challenges of using miniaturization techniques
Publisher: Elsevier
ISBN: 0128237287
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems outlines the basic principles of miniaturized analytical devices, such as spectrometric, separation, imaging and electrochemical miniaturized instruments. Concepts such as smartphone-enabled miniaturized detection systems and micro/nanomachines are also reviewed. Subsequent chapters explore the emerging application of these mobile devices for miniaturized analysis in various fields, including medicine and biomedicine, environmental chemistry, food chemistry, and forensic chemistry. This is an important reference source for materials scientists and engineers wanting to understand how miniaturization techniques are being used to create a range of efficient, sustainable electronic and optical devices. Miniaturization describes the concept of manufacturing increasingly smaller mechanical, optical, and electronic products and devices. These smaller instruments can be used to produce micro- and nanoscale components required for analytical procedures. A variety of micro/nanoscale materials have been synthesized and used in analytical procedures, such as sensing materials, sorbents, adsorbents, catalysts, and reactors. The miniaturization of analytical instruments can be applied to the different steps of analytical procedures, such as sample preparation, analytical separation, and detection, reducing the total cost of manufacturing the instruments and the needed reagents and organic solvents. - Outlines how miniaturization techniques can be used to create new optical and electronic micro- and nanodevices - Explores major application areas, including biomedicine, environmental science and security - Assesses the major challenges of using miniaturization techniques
Made to Measure
Author: Philip Ball
Publisher: Princeton University Press
ISBN: 1400865336
Category : Science
Languages : en
Pages : 468
Book Description
Made to Measure introduces a general audience to one of today's most exciting areas of scientific research: materials science. Philip Ball describes how scientists are currently inventing thousands of new materials, ranging from synthetic skin, blood, and bone to substances that repair themselves and adapt to their environment, that swell and flex like muscles, that repel any ink or paint, and that capture and store the energy of the Sun. He shows how all this is being accomplished precisely because, for the first time in history, materials are being "made to measure": designed for particular applications, rather than discovered in nature or by haphazard experimentation. Now scientists literally put new materials together on the drawing board in the same way that a blueprint is specified for a house or an electronic circuit. But the designers are working not with skylights and alcoves, not with transistors and capacitors, but with molecules and atoms. This book is written in the same engaging manner as Ball's popular book on chemistry, Designing the Molecular World, and it links insights from chemistry, biology, and physics with those from engineering as it outlines the various areas in which new materials will transform our lives in the twenty-first century. The chapters provide vignettes from a broad range of selected areas of materials science and can be read as separate essays. The subjects include photonic materials, materials for information storage, smart materials, biomaterials, biomedical materials, materials for clean energy, porous materials, diamond and hard materials, new polymers, and surfaces and interfaces.
Publisher: Princeton University Press
ISBN: 1400865336
Category : Science
Languages : en
Pages : 468
Book Description
Made to Measure introduces a general audience to one of today's most exciting areas of scientific research: materials science. Philip Ball describes how scientists are currently inventing thousands of new materials, ranging from synthetic skin, blood, and bone to substances that repair themselves and adapt to their environment, that swell and flex like muscles, that repel any ink or paint, and that capture and store the energy of the Sun. He shows how all this is being accomplished precisely because, for the first time in history, materials are being "made to measure": designed for particular applications, rather than discovered in nature or by haphazard experimentation. Now scientists literally put new materials together on the drawing board in the same way that a blueprint is specified for a house or an electronic circuit. But the designers are working not with skylights and alcoves, not with transistors and capacitors, but with molecules and atoms. This book is written in the same engaging manner as Ball's popular book on chemistry, Designing the Molecular World, and it links insights from chemistry, biology, and physics with those from engineering as it outlines the various areas in which new materials will transform our lives in the twenty-first century. The chapters provide vignettes from a broad range of selected areas of materials science and can be read as separate essays. The subjects include photonic materials, materials for information storage, smart materials, biomaterials, biomedical materials, materials for clean energy, porous materials, diamond and hard materials, new polymers, and surfaces and interfaces.