Microwave and Optical Waveguide Analysis by the Finite Element Method

Microwave and Optical Waveguide Analysis by the Finite Element Method PDF Author: F. Aníbal Fernández
Publisher:
ISBN: 9780863801822
Category : Dielectric wave guides
Languages : en
Pages : 192

Get Book Here

Book Description
This text presents a method which can be implemented on a personal computer for providing a complete description of the spectrum of microwave and optical waveguides, including propagating, evanescent and radiating modes. Full details of the mathematical formulation and its finite element implementation are given together with a variety of examples. It also provides ideas on how to solve sparse matrix eigenvalue problems more quickly and a number of state-of-the-art examples in microwaves and optoelectronics.

Microwave and Optical Waveguide Analysis by the Finite Element Method

Microwave and Optical Waveguide Analysis by the Finite Element Method PDF Author: F. Aníbal Fernández
Publisher:
ISBN: 9780863801822
Category : Dielectric wave guides
Languages : en
Pages : 192

Get Book Here

Book Description
This text presents a method which can be implemented on a personal computer for providing a complete description of the spectrum of microwave and optical waveguides, including propagating, evanescent and radiating modes. Full details of the mathematical formulation and its finite element implementation are given together with a variety of examples. It also provides ideas on how to solve sparse matrix eigenvalue problems more quickly and a number of state-of-the-art examples in microwaves and optoelectronics.

Microwave And Optical Waveguide Analysis By The Finite Element Method

Microwave And Optical Waveguide Analysis By The Finite Element Method PDF Author: F.A. Fernandez
Publisher:
ISBN:
Category :
Languages : it
Pages : 0

Get Book Here

Book Description


Finite Element Methods for Nonlinear Optical Waveguides

Finite Element Methods for Nonlinear Optical Waveguides PDF Author: Xin-Hua Wang
Publisher: Routledge
ISBN: 1351448579
Category : Technology & Engineering
Languages : en
Pages : 314

Get Book Here

Book Description
This book provides researchers at the forefront of nonlinear optical technologies with robust procedures and software for the systematic investigation of the fundamental phenomena in nonlinear optical waveguide structures. A full vectorial electromagnetic formulation is adopted and the conditions under which simplification to a scalar formulation is possible are clearly indicated. The need to model the dielectric saturation properly is identified, and improved algorithms are presented for obtaining the complete power dispersion curve of structures exhibiting bistability. As the stability analysis of nonlinear modes is crucial to the development of nonlinear model methods, an effective procedure to investigate the propagation of the scalar nonlinear waves in 3D is another important feature of the book. All of the procedures described, as well as an automatic mesh generator for the finite element method, are incorporated into a software package which is included with this book.

Integrated Optics

Integrated Optics PDF Author: Robert G. Hunsperger
Publisher: Springer Science & Business Media
ISBN: 0387897755
Category : Science
Languages : en
Pages : 525

Get Book Here

Book Description
Integrated Optics explains the subject of optoelectronic devices and their use in integrated optics and fiber optic systems. The approach taken is to emphasize the physics of how devices work and how they can be (and have been) used in various applications as the field of optoelectronics has progressed from microphotonics to nanophotonics. Illustrations and references from technical journals have been used to demonstrate the relevance of the theory to currently important topics in industry. By reading this book, scientists, engineers, students and engineering managers can obtain an overall view of the theory and the most recent technology in Integrated Optics.

Multigrid Finite Element Methods for Electromagnetic Field Modeling

Multigrid Finite Element Methods for Electromagnetic Field Modeling PDF Author: Yu Zhu
Publisher: John Wiley & Sons
ISBN: 0471786373
Category : Science
Languages : en
Pages : 438

Get Book Here

Book Description
This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Optical Waveguide Theory by the Finite Element Method

Optical Waveguide Theory by the Finite Element Method PDF Author: Masanori Koshiba
Publisher: Springer
ISBN: 9789401047135
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.

The Finite Element Method in Electromagnetics

The Finite Element Method in Electromagnetics PDF Author: Jian-Ming Jin
Publisher: John Wiley & Sons
ISBN: 1118842022
Category : Science
Languages : en
Pages : 728

Get Book Here

Book Description
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Finite Element Software for Microwave Engineering

Finite Element Software for Microwave Engineering PDF Author: Tatsuo Itoh
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 512

Get Book Here

Book Description
Finite element methods have become essential design tools for managing the complex structures and devices needed in modern microwave technology. Long the preferred techniques of both researchers and engineers, their migration from research lab to routine industrial use has been accelerated by hardware and software improvements. The last decade has seen the widespread availability of good commercial finite element programs for an extensive range of applications. Finite Element Software for Microwave Engineering provides the first comprehensive overview of this burgeoning field. With its unique focus on current and future industrial applications rather than on mathematical methodology, this book is an invaluable complement to the existing literature on finite element methods. Directed to practicing engineers and researchers, the book describes user experience with current software, shows how existing programs can be used to solve problems not foreseen by their designers, and attempts to predict which methods may appear in the commercial products of tomorrow.

International Workshop on Finite Elements for Microwave Engineering

International Workshop on Finite Elements for Microwave Engineering PDF Author: Roberto D. Graglia
Publisher: Firenze University Press
ISBN: 8866559679
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
When Courant prepared the text of his 1942 address to the American Mathematical Society for publication, he added a two-page Appendix to illustrate how the variational methods first described by Lord Rayleigh could be put to wider use in potential theory. Choosing piecewise-linear approximants on a set of triangles which he called elements, he dashed off a couple of two-dimensional examples and the finite element method was born. Finite element activity in electrical engineering began in earnest about 1968-1969. A paper on waveguide analysis was published in Alta Frequenza in early 1969, giving the details of a finite element formulation of the classical hollow waveguide problem. It was followed by a rapid succession of papers on magnetic fields in saturable materials, dielectric loaded waveguides, and other well-known boundary value problems of electromagnetics. In the decade of the eighties, finite element methods spread quickly. In several technical areas, they assumed a dominant role in field problems. P.P. Silvester, San Miniato (PI), Italy, 1992 Early in the nineties the International Workshop on Finite Elements for Microwave Engineering started. This volume contains the history of the Workshop and the Proceedings of the 13th edition, Florence (Italy), 2016 . The 14th Workshop will be in Cartagena (Colombia), 2018.

Finite Element Modeling Methods for Photonics

Finite Element Modeling Methods for Photonics PDF Author: B. M. Azizur Rahman
Publisher: Artech House
ISBN: 1608075311
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book Here

Book Description
The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astronomy, and sensing, to chemistry, imaging, and biomedical R&D. This book emphasizes practical, problem-solving applications and includes real-world examples to assist readers in understanding how mathematical concepts translate to computer code for finite element-based methods applicable to a range of photonic structures. In addition, this is the perfect support to anyone using the COMSOL Multiphysics© RF Module.