Characterisation of Radiation Damage by Transmission Electron Microscopy

Characterisation of Radiation Damage by Transmission Electron Microscopy PDF Author: M.L Jenkins
Publisher: CRC Press
ISBN: 9780750307482
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
Characterization of Radiation Damage by Transmission Electron Microscopy details the electron microscopy methods used to investigate complex and fine-scale microstructures, such as those produced by fast-particle irradiation of metals or ion implantation of semiconductors. The book focuses on the methods used to characterize small point-defect clusters, such as dislocation loops, because the coverage in general microscopy textbooks is limited and omits many of the problems associated with the analysis of these defects. The book also describes in situ, high-resolution, and analytical techniques. Techniques are illustrated with examples, providing a solid overview of the contribution of TEM to radiation damage mechanisms. The book is most useful to researchers in, or entering into, the field of defect analysis in materials.

Characterisation of Radiation Damage by Transmission Electron Microscopy

Characterisation of Radiation Damage by Transmission Electron Microscopy PDF Author: M.L Jenkins
Publisher: CRC Press
ISBN: 9780750307482
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
Characterization of Radiation Damage by Transmission Electron Microscopy details the electron microscopy methods used to investigate complex and fine-scale microstructures, such as those produced by fast-particle irradiation of metals or ion implantation of semiconductors. The book focuses on the methods used to characterize small point-defect clusters, such as dislocation loops, because the coverage in general microscopy textbooks is limited and omits many of the problems associated with the analysis of these defects. The book also describes in situ, high-resolution, and analytical techniques. Techniques are illustrated with examples, providing a solid overview of the contribution of TEM to radiation damage mechanisms. The book is most useful to researchers in, or entering into, the field of defect analysis in materials.

Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications PDF Author: Robert Odette
Publisher: Newnes
ISBN: 012397349X
Category : Technology & Engineering
Languages : en
Pages : 676

Get Book Here

Book Description
High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science PDF Author: GARY S. WAS
Publisher: Springer
ISBN: 1493934384
Category : Technology & Engineering
Languages : en
Pages : 1014

Get Book Here

Book Description
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

Comprehensive Nuclear Materials

Comprehensive Nuclear Materials PDF Author:
Publisher: Elsevier
ISBN: 0081028660
Category : Science
Languages : en
Pages : 4871

Get Book Here

Book Description
Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field

Radiation Damage in Materials

Radiation Damage in Materials PDF Author: Yongqiang Wang
Publisher: MDPI
ISBN: 303936362X
Category : Science
Languages : en
Pages : 196

Get Book Here

Book Description
The complexity of radiation damage effects in materials that are used in various irradiation environments stems from the fundamental particle–solid interactions and the subsequent damage recovery dynamics after the collision cascades, which involves multiple length and time scales. Adding to this complexity are the transmuted impurities that are unavoidable from accompanying nuclear processes. Helium is one such impurity that plays an important and unique role in controlling the microstructure and properties of materials used in fast fission reactors, plasma-facing and structural materials in fusion devices, spallation neutron target designs, actinides, tritium-containing materials, and nuclear waste. Their ultra-low solubility in virtually all solids forces He atoms to self-precipitate into small bubbles that become nucleation sites for further void growth under radiation-induced vacancy supersaturations, resulting in material swelling and high-temperature He embrittlement, as well as surface blistering under low-energy and high-flux He bombardment. This Special Issue, “Radiation Damage in Materials—Helium Effects”, contains review articles and full-length papers on new irradiation material research activities and novel material ideas using experimental and/or modeling approaches. These studies elucidate the interactions of helium with various extreme environments and tailored nanostructures, as well as their impact on microstructural evolution and material properties.

Effects of Radiation on Materials

Effects of Radiation on Materials PDF Author: Roger E. Stoller
Publisher: ASTM International
ISBN: 080311477X
Category : Materials
Languages : en
Pages : 1315

Get Book Here

Book Description
Symposium held in Nashville, Tennessee, June 1990. Almost two-thirds of these 91 papers are authored by researchers outside of the US (including information on research in the former USSR, Japan, and Europe). Topics include: current commercial power reactor systems; microstructural characterization

Radiation Effects in Materials

Radiation Effects in Materials PDF Author: Waldemar Alfredo Monteiro
Publisher: BoD – Books on Demand
ISBN: 953512417X
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
The study of radiation effects has developed as a major field of materials science from the beginning, approximately 70 years ago. Its rapid development has been driven by two strong influences. The properties of the crystal defects and the materials containing them may then be studied. The types of radiation that can alter structural materials consist of neutrons, ions, electrons, gamma rays or other electromagnetic waves with different wavelengths. All of these forms of radiation have the capability to displace atoms/molecules from their lattice sites, which is the fundamental process that drives the changes in all materials. The effect of irradiation on materials is fixed in the initial event in which an energetic projectile strikes a target. The book is distributed in four sections: Ionic Materials; Biomaterials; Polymeric Materials and Metallic Materials.

Effects of Radiation on Materials

Effects of Radiation on Materials PDF Author: Martin L. Grossbeck
Publisher: ASTM International
ISBN: 0803134770
Category : Materials
Languages : en
Pages : 767

Get Book Here

Book Description


Structural Materials for Generation IV Nuclear Reactors

Structural Materials for Generation IV Nuclear Reactors PDF Author: Pascal Yvon
Publisher: Woodhead Publishing
ISBN: 0081009127
Category : Technology & Engineering
Languages : en
Pages : 686

Get Book Here

Book Description
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area

An Introduction to Nuclear Materials

An Introduction to Nuclear Materials PDF Author: K. Linga Murty
Publisher: John Wiley & Sons
ISBN: 3527677089
Category : Technology & Engineering
Languages : en
Pages : 401

Get Book Here

Book Description
Covering both fundamental and advanced aspects in an accessible way, this textbook begins with an overview of nuclear reactor systems, helping readers to familiarize themselves with the varied designs. Then the readers are introduced to different possibilities for materials applications in the various sections of nuclear energy systems. Materials selection and life prediction methodologies for nuclear reactors are also presented in relation to creep, corrosion and other degradation mechanisms. An appendix compiles useful property data relevant for nuclear reactor applications. Throughout the book, there is a thorough coverage of various materials science principles, such as physical and mechanical metallurgy, defects and diffusion and radiation effects on materials, with serious efforts made to establish structure-property correlations wherever possible. With its emphasis on the latest developments and outstanding problems in the field, this is both a valuable introduction and a ready reference for beginners and experienced practitioners alike.