Micromechanics of Progressive Failure in Carbon Fibre-reinforced Composites Using Finite Element Method

Micromechanics of Progressive Failure in Carbon Fibre-reinforced Composites Using Finite Element Method PDF Author: Suparerk Sirivedin
Publisher:
ISBN:
Category :
Languages : en
Pages : 566

Get Book Here

Book Description

Micromechanics of Progressive Failure in Carbon Fibre-reinforced Composites Using Finite Element Method

Micromechanics of Progressive Failure in Carbon Fibre-reinforced Composites Using Finite Element Method PDF Author: Suparerk Sirivedin
Publisher:
ISBN:
Category :
Languages : en
Pages : 566

Get Book Here

Book Description


The 8th International Conference on Advances in Construction Machinery and Vehicle Engineering

The 8th International Conference on Advances in Construction Machinery and Vehicle Engineering PDF Author: Saman K. Halgamuge
Publisher: Springer Nature
ISBN: 9819718767
Category :
Languages : en
Pages : 1282

Get Book Here

Book Description


Finite Element Analysis of Structures through Unified Formulation

Finite Element Analysis of Structures through Unified Formulation PDF Author: Erasmo Carrera
Publisher: John Wiley & Sons
ISBN: 1118536657
Category : Mathematics
Languages : en
Pages : 569

Get Book Here

Book Description
The finite element method (FEM) is a computational tool widely used to design and analyse complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same 'fundamental nucleus' that comes from geometrical relations and Hooke's law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D and 2D FEs that make use of 'real' physical surfaces rather than ’artificial’ mathematical surfaces which are difficult to interface in CAD/CAE software. Key features: Covers how the refined formulation can be easily and conveniently used to analyse laminated structures, such as sandwich and composite structures, and to deal with multifield problems Shows the performance of different FE models through the 'best theory diagram' which allows different models to be compared in terms of accuracy and computational cost Introduces an axiomatic/asymptotic approach that reduces the computational cost of the structural analysis without affecting the accuracy Introduces an innovative 'component-wise' approach to deal with complex structures Accompanied by a website hosting the dedicated software package MUL2 (www.mul2.com) Finite Element Analysis of Structures Through Unified Formulation is a valuable reference for researchers and practitioners, and is also a useful source of information for graduate students in civil, mechanical and aerospace engineering.

Stiffness and Progressive Damage Analysis on Random Chopped Fiber Composite Using FEM

Stiffness and Progressive Damage Analysis on Random Chopped Fiber Composite Using FEM PDF Author: Yi Pan
Publisher:
ISBN:
Category : Composite materials in automobiles
Languages : en
Pages : 137

Get Book Here

Book Description
The need of vehicle weight reduction and fuel efficiency in the automotive industry calls for substituting traditional materials with lightweight ones. With the maturity of the preforming technologies, random chopped fiber composites have received increasing attention in recent years as replacement for traditional structural materials. In order to expand their application, accurate material characterization is required. Material properties such as effective elastic stiffness, material damage behavior, and strength are of primary interest. In this thesis, a micro-mechanics based finite element analysis method for the random chopped fiber composite is developed. In order to obtain the effective material properties of random chopped fiber composites, a modified random sequential adsorption technique is proposed to generate the representative volume element of random chopped fiber composites. In the three-dimensional representative volume element generation algorithm, a fiber is bended locally to avoid intersecting other fibers and consequently to overcome the "jamming limit" in the existing techniques. The volume fraction of a representative volume element generated by the modified random sequential adsorption is as high as that of the specimens provided by industry, which is about 35% to 40%. A homogenization scheme is applied to the finite element solution of the boundary value problem, defined in the representative volume element with proper boundary conditions, to compute the effective elastic stiffness constants of the composite. An automatic procedure based on a moving window technique is also presented to determine the proper size of the representative volume element of the random chopped fiber composite. Investigation on the damage behavior of the composite is carried out by using constituent's mechanical properties. Three damage mechanisms are considered, namely, the matrix cracking, interfacial debonding, and fiber breakage. The cohesive zone model is adopted to represent interfacial debonding. The effect of matrix cracking is accounted for by a modified von Mises yield criterion and subsequently a gradual material degradation model. Fiber breakage is modeled by a stress-based failure criterion and a sudden material degradation model. Effects of interfacial strength, critical energy release rate, and residual thermal stress on the overall performance of the composite are investigated. The results of the finite element analysis are validated by experimental data.

The Variational Approach to Fracture

The Variational Approach to Fracture PDF Author: Blaise Bourdin
Publisher: Springer Science & Business Media
ISBN: 1402063954
Category : Technology & Engineering
Languages : en
Pages : 173

Get Book Here

Book Description
Presenting original results from both theoretical and numerical viewpoints, this text offers a detailed discussion of the variational approach to brittle fracture. This approach views crack growth as the result of a competition between bulk and surface energy, treating crack evolution from its initiation all the way to the failure of a sample. The authors model crack initiation, crack path, and crack extension for arbitrary geometries and loads.

Woven Fabric Composites

Woven Fabric Composites PDF Author: Niranjan K. Naik
Publisher: CRC Press
ISBN: 9780877629900
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description
This work is presented as an analytical methodology developed to study the thermo-elastic behavior of woven fabric composites. Also, experimental studies on the failure behavior of woven fabric composites are presented.

Dynamic Response and Failure of Composite Materials

Dynamic Response and Failure of Composite Materials PDF Author: Valentina Lopresto
Publisher: Springer Nature
ISBN: 3031285476
Category : Technology & Engineering
Languages : en
Pages : 422

Get Book Here

Book Description
This book gathers the latest advances and innovations in the field of dynamic loads and testing of composite materials and sandwich structures, as presented by international researchers and engineers at the International Symposium on Dynamic Response and Failure of Composite Materials (DRAF), held in Ischia, Italy, on June 21–24, 2022. Contributions include a wide range of topics such as low and high velocity impacts, smart composites, hull slamming, shock and blast, hail and bird impact, damage resistance and tolerance, failure mechanisms, composite structures, delamination and fractures, progressive damage modeling, micromechanics, ballistic impacts, ceramic and CMC, auxetic materials and structures, additive manufacturing, crashworthiness, green composites, and structural health monitoring.

Stress Concentrations in Filamentary Structures

Stress Concentrations in Filamentary Structures PDF Author: John M. Hedgepeth
Publisher:
ISBN:
Category : Crystal whiskers
Languages : en
Pages : 36

Get Book Here

Book Description


Progressive Damage Modeling of Tensile Deformation of a Fiber Reinforced Composite Laminate Under Strain Rate Effects

Progressive Damage Modeling of Tensile Deformation of a Fiber Reinforced Composite Laminate Under Strain Rate Effects PDF Author: Shiguang Deng
Publisher:
ISBN: 9781267648990
Category : Composite materials
Languages : en
Pages : 129

Get Book Here

Book Description
Finite element modeling provides an efficient approach to simulate the mechanical behaviors of composite materials. Many finite element models were built to predict the mechanical responses of composite materials under the static loading conditions. Such static-loading models of composite materials were too modest to predict their behaviors under the dynamic loading process, say varying strain rates. In this thesis, we established both macromechanical and micromechanical finite element models to simulate the progressive damages of fiber reinforced composite materials under varying intermediate strain rates. With the application of the strain-rate-dependent composite properties, failure analysis and associated property degradations of failed composites, we were able to build a macromechanical finite element model to simulate the strain-rate-dependent mechanical behaviors of composite materials under intermediate strain rates. Through the comparison of our numerical results with experimental observations and modeling results reported in the literature, recommended values of mesh densities were presented and the correctness of our macromechanical mode was validated. The model was further developed with a multicontinuum theory (MCT). Based on the macromechanical model, a micromechanical model was developed to study the effects of a MCT-based constituent stress interactive failure criterion on the numerical results of a tensile test on a composite coupon with varying strain rates. The MCT is based on a constituent volume average procedure and was used to calculate the stress and strain states of every constituent within the composite. Based on the stress information of the constituents, associated failure criteria and degradation rules were presented for the model. By comparing the simulation results of the macromechanical and micromechanical models, we found some differences between them and further recommendations were given for modifying the present model to simulate the progressive damage dynamic responses of composite structures more precisely.

Stress Analysis of Fiber-reinforced Composite Materials

Stress Analysis of Fiber-reinforced Composite Materials PDF Author: M. W. Hyer
Publisher: DEStech Publications, Inc
ISBN: 193207886X
Category : Technology & Engineering
Languages : en
Pages : 718

Get Book Here

Book Description
Updated and improved, Stress Analysis of Fiber-Reinforced Composite Materials, Hyer's work remains the definitive introduction to the use of mechanics to understand stresses in composites caused by deformations, loading, and temperature changes. In contrast to a materials science approach, Hyer emphasizes the micromechanics of stress and deformation for composite material analysis. The book provides invaluable analytic tools for students and engineers seeking to understand composite properties and failure limits. A key feature is a series of analytic problems continuing throughout the text, starting from relatively simple problems, which are built up step-by-step with accompanying calculations. The problem series uses the same material properties, so the impact of the elastic and thermal expansion properties for a single-layer of FR material on the stress, strains, elastic properties, thermal expansion and failure stress of cross-ply and angle-ply symmetric and unsymmetric laminates can be evaluated. The book shows how thermally induced stresses and strains due to curing, add to or subtract from those due to applied loads.Another important element, and one unique to this book, is an emphasis on the difference between specifying the applied loads, i.e., force and moment results, often the case in practice, versus specifying strains and curvatures and determining the subsequent stresses and force and moment results. This represents a fundamental distinction in solid mechanics.