Author: Johannes Wippler
Publisher: KIT Scientific Publishing
ISBN: 386644818X
Category : Technology & Engineering
Languages : en
Pages : 164
Book Description
Silicon nitride is used for challening applications like cutting inserts or forming rolls. The extreme strength and toughness of the material is achieved by an interaction between the microstructure and fracture behaviour on the microlevel. In order to understand these mechanisms, detailed unit cells have been defined and used for the determination of the effective fracture properties. The results have been used for the implementation of an effective continuum damage mechanics model.
Micromechanical Finite Element Simulations of Crack Propagation in Silicon Nitride
Author: Johannes Wippler
Publisher: KIT Scientific Publishing
ISBN: 386644818X
Category : Technology & Engineering
Languages : en
Pages : 164
Book Description
Silicon nitride is used for challening applications like cutting inserts or forming rolls. The extreme strength and toughness of the material is achieved by an interaction between the microstructure and fracture behaviour on the microlevel. In order to understand these mechanisms, detailed unit cells have been defined and used for the determination of the effective fracture properties. The results have been used for the implementation of an effective continuum damage mechanics model.
Publisher: KIT Scientific Publishing
ISBN: 386644818X
Category : Technology & Engineering
Languages : en
Pages : 164
Book Description
Silicon nitride is used for challening applications like cutting inserts or forming rolls. The extreme strength and toughness of the material is achieved by an interaction between the microstructure and fracture behaviour on the microlevel. In order to understand these mechanisms, detailed unit cells have been defined and used for the determination of the effective fracture properties. The results have been used for the implementation of an effective continuum damage mechanics model.
Micromechanical Finite Element Simulations of Crack Propagation in Silicon Nitride
Author: Johannes Wippler
Publisher:
ISBN:
Category : Silicon nitride
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Silicon nitride
Languages : en
Pages : 0
Book Description
Finite element simulation of dislocation based plasticity and diffusion in multiphase materials at high temperature
Author: Albiez, Jürgen
Publisher: KIT Scientific Publishing
ISBN: 3731509180
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
A single-crystal plasticity model as well as a gradient crystal plasticity model are used to describe the creep behavior of directionally solidi?ed NiAl based eutectic alloys. To consider the transition from theoretical to bulk strength, a hardening model was introduced to describe the strength of the reinforcing phases. Moreover, to account for microstructural changes due to material ?ux, a coupled diffusional-mechanical simulation model was introduced.
Publisher: KIT Scientific Publishing
ISBN: 3731509180
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
A single-crystal plasticity model as well as a gradient crystal plasticity model are used to describe the creep behavior of directionally solidi?ed NiAl based eutectic alloys. To consider the transition from theoretical to bulk strength, a hardening model was introduced to describe the strength of the reinforcing phases. Moreover, to account for microstructural changes due to material ?ux, a coupled diffusional-mechanical simulation model was introduced.
Micromechanical Modeling and Simulation of Forming Processes
Author: Glavas, Vedran
Publisher: KIT Scientific Publishing
ISBN: 3731506025
Category : Technology (General)
Languages : en
Pages : 158
Book Description
The deep drawing of an aluminum alloy used in the packaging industry for the beverage can manufacturing process is investigated. In this work, the effective constitutive behavior is based on a crystal plasticity model in combination with a non-linear Hashin-Shtrikman type homogenization scheme in which a reference stiffness controls the stress and strain fluctuations. The simulation results are compared to experiments in terms of deep drawing earing profiles, texture evolution, and localization.
Publisher: KIT Scientific Publishing
ISBN: 3731506025
Category : Technology (General)
Languages : en
Pages : 158
Book Description
The deep drawing of an aluminum alloy used in the packaging industry for the beverage can manufacturing process is investigated. In this work, the effective constitutive behavior is based on a crystal plasticity model in combination with a non-linear Hashin-Shtrikman type homogenization scheme in which a reference stiffness controls the stress and strain fluctuations. The simulation results are compared to experiments in terms of deep drawing earing profiles, texture evolution, and localization.
Micromechanical modeling of short-fiber reinforced composites
Author: Mueller, Viktor
Publisher: KIT Scientific Publishing
ISBN: 3731504545
Category : Technology (General)
Languages : en
Pages : 166
Book Description
This work is focused on the prediction of elastic behavior of short-fiber reinforced composites by mean-field homogenization methods, which account for experimentally determined and artificially constructed microstructure data in discrete and averaged form. The predictions are compared with experimental measurements and a full-field voxel-based approach. It is investigated, whether the second-order orientation tensor delivers a sufficient microstructure description for such predictions.
Publisher: KIT Scientific Publishing
ISBN: 3731504545
Category : Technology (General)
Languages : en
Pages : 166
Book Description
This work is focused on the prediction of elastic behavior of short-fiber reinforced composites by mean-field homogenization methods, which account for experimentally determined and artificially constructed microstructure data in discrete and averaged form. The predictions are compared with experimental measurements and a full-field voxel-based approach. It is investigated, whether the second-order orientation tensor delivers a sufficient microstructure description for such predictions.
Microstructure generation and micromechanical modeling of sheet molding compound composites
Author: Görthofer, Johannes
Publisher: KIT Scientific Publishing
ISBN: 373151205X
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
Wir präsentieren einen Algorithmus zur schnellen Erzeugung von SMC Mikrostrukturen hoher Güte, durch Verwendung einer exakten Schließung und eines quasi-zufälligen Samplings. Darüber hinaus stellen wir ein modulares Framework zur Modellierung anisotroper Schädigung vor. Unser Konzept der Extraktionstensoren und Schädigungsfunktionen ermöglicht die Beschreibung komplexer Vorgänge. Darüber hinaus schlagen wir einen ganzheitlichen Multiskalenansatz zur Bestimmung anisotroper Versagenskriterien vor. - We introduce an algorithm that allows for a fast generation of SMC composite microstructures. An exact closure approximation and a quasi-random orientation sampling ensure high fidelity. Furthermore, we present a modular framework for anisotropic damage evolution. Our concept of extraction tensors and damage-hardening functions enables the description of complex damage-degradation. In addition, we propose a holistic multiscale approach for constructing anisotropic failure criteria.
Publisher: KIT Scientific Publishing
ISBN: 373151205X
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
Wir präsentieren einen Algorithmus zur schnellen Erzeugung von SMC Mikrostrukturen hoher Güte, durch Verwendung einer exakten Schließung und eines quasi-zufälligen Samplings. Darüber hinaus stellen wir ein modulares Framework zur Modellierung anisotroper Schädigung vor. Unser Konzept der Extraktionstensoren und Schädigungsfunktionen ermöglicht die Beschreibung komplexer Vorgänge. Darüber hinaus schlagen wir einen ganzheitlichen Multiskalenansatz zur Bestimmung anisotroper Versagenskriterien vor. - We introduce an algorithm that allows for a fast generation of SMC composite microstructures. An exact closure approximation and a quasi-random orientation sampling ensure high fidelity. Furthermore, we present a modular framework for anisotropic damage evolution. Our concept of extraction tensors and damage-hardening functions enables the description of complex damage-degradation. In addition, we propose a holistic multiscale approach for constructing anisotropic failure criteria.
Deep material networks for efficient scale-bridging in thermomechanical simulations of solids
Author: Gajek, Sebastian
Publisher: KIT Scientific Publishing
ISBN: 3731512785
Category :
Languages : en
Pages : 326
Book Description
We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with minimal computational effort. A new interpolation technique is presented enabling the consideration of fluctuating microstructure characteristics in macroscopic simulations.
Publisher: KIT Scientific Publishing
ISBN: 3731512785
Category :
Languages : en
Pages : 326
Book Description
We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with minimal computational effort. A new interpolation technique is presented enabling the consideration of fluctuating microstructure characteristics in macroscopic simulations.
Two-Scale Thermomechanical Simulation of Hot Stamping
Author: Neumann, Rudolf
Publisher: KIT Scientific Publishing
ISBN: 3731507145
Category : Technology (General)
Languages : en
Pages : 270
Book Description
Hot stamping is a hot drawing process which takes advantage of the polymorphic steel behavior to produce parts with a good strength-to-weight ratio. For the simulation of the hot stamping process, a nonlinear two-scale thermomechanical model is suggested and implemented into the FE tool ABAQUS. Phase transformation and transformation induced plasticity effects are taken into account. The simulation results regarding the final shape and residual stresses are compared to experimental findings.
Publisher: KIT Scientific Publishing
ISBN: 3731507145
Category : Technology (General)
Languages : en
Pages : 270
Book Description
Hot stamping is a hot drawing process which takes advantage of the polymorphic steel behavior to produce parts with a good strength-to-weight ratio. For the simulation of the hot stamping process, a nonlinear two-scale thermomechanical model is suggested and implemented into the FE tool ABAQUS. Phase transformation and transformation induced plasticity effects are taken into account. The simulation results regarding the final shape and residual stresses are compared to experimental findings.
Efficient fast Fourier transform-based solvers for computing the thermomechanical behavior of applied materials
Author: Wicht, Daniel
Publisher: KIT Scientific Publishing
ISBN: 3731512203
Category : Science
Languages : en
Pages : 336
Book Description
The mechanical behavior of many applied materials arises from their microstructure. Thus, to aid the design, development and industrialization of new materials, robust computational homogenization methods are indispensable. The present thesis is devoted to investigating and developing FFT-based micromechanics solvers for efficiently computing the (thermo)mechanical response of nonlinear composite materials with complex microstructures.
Publisher: KIT Scientific Publishing
ISBN: 3731512203
Category : Science
Languages : en
Pages : 336
Book Description
The mechanical behavior of many applied materials arises from their microstructure. Thus, to aid the design, development and industrialization of new materials, robust computational homogenization methods are indispensable. The present thesis is devoted to investigating and developing FFT-based micromechanics solvers for efficiently computing the (thermo)mechanical response of nonlinear composite materials with complex microstructures.
Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound
Author: Bauer, Julian Karl
Publisher: KIT Scientific Publishing
ISBN: 3731512629
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
Effective mechanical properties of fiber-reinforced composites strongly depend on the microstructure, including the fibers' orientation. Studying this dependency, we identify the variety of fiber orientation tensors up to fourth-order using irreducible tensors and material symmetry. The case of planar fiber orientation tensors, relevant for sheet molding compound, is presented completely. Consequences for the reconstruction of fiber distributions and mean field homogenization are presented.
Publisher: KIT Scientific Publishing
ISBN: 3731512629
Category : Technology & Engineering
Languages : en
Pages : 252
Book Description
Effective mechanical properties of fiber-reinforced composites strongly depend on the microstructure, including the fibers' orientation. Studying this dependency, we identify the variety of fiber orientation tensors up to fourth-order using irreducible tensors and material symmetry. The case of planar fiber orientation tensors, relevant for sheet molding compound, is presented completely. Consequences for the reconstruction of fiber distributions and mean field homogenization are presented.