Author: Sri Haryani Anwar
Publisher: Cuvillier Verlag
ISBN: 3736937172
Category : Science
Languages : en
Pages : 210
Book Description
The stability of microencapsulated fish oil prepared using various drying methods is investigated. In the preliminary study, two production processes, i.e., spray granulation (SG) and SG followed by film coating (SG-FC) are examined and compared. First, three types of fish oil (10/50, 33/22, and 18/12) based on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are used in the SG process. Each type of fish oil was emulsified with soybean soluble polysaccharide (SSPS) and maltodextrin to produce 25% oil powders. Second, a 15% film coating of hydroxypropyl betacyclodextrin (HPBCD) is applied to the SG granules. The powder stability against oxidation is examined by measurement of peroxide values (PV) and GC-headspace propanal after 6- week’s storage at room temperature (± 21 ºC) and at 3 - 4 ºC. The results show that the coated powders have lower stability than uncoated powders and this indicates that the film coating by HPBCD ineffectively protected the fish oil as the coating process might have induced further oxidation. In the main research, emulsions of 33/22 fish oil are prepared with four combinations of matrices and microcapsules are produced by SG, spray drying (SD), and freeze drying (FD). The objective is to identify the most critical factors which determine powder stability and to further examine the superiority of the SG process compared to other drying processes. Oxidation parameters and analytical methods remain the same as in the preliminary study, but the storage time is extended to 8 weeks. The best matrices are a combination of 10% (w/w) SSPS and 65% (w/w) OSA-starch. Microencapsulation of 620 mg/g fish oil with these coating materials then dried by SG is able to produce fish oil powder having a very low propanal content and with a shelf life of five weeks at ± 21 ºC. The ability of SSPS to form thick membranes at the oil/water interface and the role of both matrices to stabilize emulsion by steric repulsion are critical to prevent early formation of peroxides. The results of the present research indicate that instead of layering a single concentrated core, microcapsule formation by the SG process is actually started by agglomeration of seed particles. The seed particles are then covered by the growth of droplet deposition and the granule surface is coated by fine particles. This assumption is supported by scanning electron microscope (SEM) examinations which verify the raspberry-like microstructure of the final granules. Therefore, it can be assumed that the SG process produces “multiple encapsulations” granules and provides maximum protection to the oil droplets. Comparison of the SG, SG-FC, SD, and FD processes confirms that combination of matrices, drying temperature, microcapsule morphology, and processing time are among the most critical factors governing the stability. Exposure to high drying temperature or heat is proved to be a limiting factor for drying unstable emulsion. If a process does not apply high drying temperature, the particle morphology becomes a determining factor for product stability. The main contribution of this study is to provide in-depth evaluation of four different drying processes with comprehensive information on the drying mechanisms in relation to how they affect the stability of microcapsules. The amount of polyunsaturated fatty acids (PUFAs), fish oil quality, type of matrix, and their physicochemical characteristics are also discussed in this study.
Microencapsulation of Fish Oil Using Spray Granulation, Spray Drying and Freeze Drying
Author: Sri Haryani Anwar
Publisher: Cuvillier Verlag
ISBN: 3736937172
Category : Science
Languages : en
Pages : 210
Book Description
The stability of microencapsulated fish oil prepared using various drying methods is investigated. In the preliminary study, two production processes, i.e., spray granulation (SG) and SG followed by film coating (SG-FC) are examined and compared. First, three types of fish oil (10/50, 33/22, and 18/12) based on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are used in the SG process. Each type of fish oil was emulsified with soybean soluble polysaccharide (SSPS) and maltodextrin to produce 25% oil powders. Second, a 15% film coating of hydroxypropyl betacyclodextrin (HPBCD) is applied to the SG granules. The powder stability against oxidation is examined by measurement of peroxide values (PV) and GC-headspace propanal after 6- week’s storage at room temperature (± 21 ºC) and at 3 - 4 ºC. The results show that the coated powders have lower stability than uncoated powders and this indicates that the film coating by HPBCD ineffectively protected the fish oil as the coating process might have induced further oxidation. In the main research, emulsions of 33/22 fish oil are prepared with four combinations of matrices and microcapsules are produced by SG, spray drying (SD), and freeze drying (FD). The objective is to identify the most critical factors which determine powder stability and to further examine the superiority of the SG process compared to other drying processes. Oxidation parameters and analytical methods remain the same as in the preliminary study, but the storage time is extended to 8 weeks. The best matrices are a combination of 10% (w/w) SSPS and 65% (w/w) OSA-starch. Microencapsulation of 620 mg/g fish oil with these coating materials then dried by SG is able to produce fish oil powder having a very low propanal content and with a shelf life of five weeks at ± 21 ºC. The ability of SSPS to form thick membranes at the oil/water interface and the role of both matrices to stabilize emulsion by steric repulsion are critical to prevent early formation of peroxides. The results of the present research indicate that instead of layering a single concentrated core, microcapsule formation by the SG process is actually started by agglomeration of seed particles. The seed particles are then covered by the growth of droplet deposition and the granule surface is coated by fine particles. This assumption is supported by scanning electron microscope (SEM) examinations which verify the raspberry-like microstructure of the final granules. Therefore, it can be assumed that the SG process produces “multiple encapsulations” granules and provides maximum protection to the oil droplets. Comparison of the SG, SG-FC, SD, and FD processes confirms that combination of matrices, drying temperature, microcapsule morphology, and processing time are among the most critical factors governing the stability. Exposure to high drying temperature or heat is proved to be a limiting factor for drying unstable emulsion. If a process does not apply high drying temperature, the particle morphology becomes a determining factor for product stability. The main contribution of this study is to provide in-depth evaluation of four different drying processes with comprehensive information on the drying mechanisms in relation to how they affect the stability of microcapsules. The amount of polyunsaturated fatty acids (PUFAs), fish oil quality, type of matrix, and their physicochemical characteristics are also discussed in this study.
Publisher: Cuvillier Verlag
ISBN: 3736937172
Category : Science
Languages : en
Pages : 210
Book Description
The stability of microencapsulated fish oil prepared using various drying methods is investigated. In the preliminary study, two production processes, i.e., spray granulation (SG) and SG followed by film coating (SG-FC) are examined and compared. First, three types of fish oil (10/50, 33/22, and 18/12) based on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are used in the SG process. Each type of fish oil was emulsified with soybean soluble polysaccharide (SSPS) and maltodextrin to produce 25% oil powders. Second, a 15% film coating of hydroxypropyl betacyclodextrin (HPBCD) is applied to the SG granules. The powder stability against oxidation is examined by measurement of peroxide values (PV) and GC-headspace propanal after 6- week’s storage at room temperature (± 21 ºC) and at 3 - 4 ºC. The results show that the coated powders have lower stability than uncoated powders and this indicates that the film coating by HPBCD ineffectively protected the fish oil as the coating process might have induced further oxidation. In the main research, emulsions of 33/22 fish oil are prepared with four combinations of matrices and microcapsules are produced by SG, spray drying (SD), and freeze drying (FD). The objective is to identify the most critical factors which determine powder stability and to further examine the superiority of the SG process compared to other drying processes. Oxidation parameters and analytical methods remain the same as in the preliminary study, but the storage time is extended to 8 weeks. The best matrices are a combination of 10% (w/w) SSPS and 65% (w/w) OSA-starch. Microencapsulation of 620 mg/g fish oil with these coating materials then dried by SG is able to produce fish oil powder having a very low propanal content and with a shelf life of five weeks at ± 21 ºC. The ability of SSPS to form thick membranes at the oil/water interface and the role of both matrices to stabilize emulsion by steric repulsion are critical to prevent early formation of peroxides. The results of the present research indicate that instead of layering a single concentrated core, microcapsule formation by the SG process is actually started by agglomeration of seed particles. The seed particles are then covered by the growth of droplet deposition and the granule surface is coated by fine particles. This assumption is supported by scanning electron microscope (SEM) examinations which verify the raspberry-like microstructure of the final granules. Therefore, it can be assumed that the SG process produces “multiple encapsulations” granules and provides maximum protection to the oil droplets. Comparison of the SG, SG-FC, SD, and FD processes confirms that combination of matrices, drying temperature, microcapsule morphology, and processing time are among the most critical factors governing the stability. Exposure to high drying temperature or heat is proved to be a limiting factor for drying unstable emulsion. If a process does not apply high drying temperature, the particle morphology becomes a determining factor for product stability. The main contribution of this study is to provide in-depth evaluation of four different drying processes with comprehensive information on the drying mechanisms in relation to how they affect the stability of microcapsules. The amount of polyunsaturated fatty acids (PUFAs), fish oil quality, type of matrix, and their physicochemical characteristics are also discussed in this study.
Food Lipids
Author: Casimir C. Akoh
Publisher: CRC Press
ISBN: 1498744877
Category : Medical
Languages : en
Pages : 1048
Book Description
Maintaining the high standards that made the previous editions such well-respected and widely used references, Food Lipids: Chemistry, Nutrition, and Biotechnology, Fourth Edition provides a new look at lipid oxidation and highlights recent findings and research. Always representative of the current state of lipid science, this edition provides 16 new chapters and 21 updated chapters, written by leading international experts, that reflect the latest advances in technology and studies of food lipids. New chapters Analysis of Fatty Acid Positional Distribution in Triacylglycerol Physical Characterization of Fats and Oils Processing and Modification Technologies for Edible Oils and Fats Crystallization Behavior of Fats: Effect of Processing Conditions Enzymatic Purification and Enrichment and Purification of Polyunsaturated Fatty Acids and Conjugated Linoleic Acid Isomers Microbial Lipid Production Food Applications of Lipids Encapsulation Technologies for Lipids Rethinking Lipid Oxidation Digestion, Absorption and Metabolism of Lipids Omega-3 Polyunsaturated Fatty Acids and Health Brain Lipids in Health and Disease Biotechnologically Enriched Cereals with PUFAs in Ruminant and Chicken Nutrition Enzyme-Catalyzed Production of Lipid Based Esters for the Food Industry: Emerging Process and Technology Production of Edible Oils Through Metabolic Engineering Genetically Engineered Cereals for Production of Polyunsaturated Fatty Acids The most comprehensive and relevant treatment of food lipids available, this book highlights the role of dietary fats in foods, human health, and disease. Divided into five parts, it begins with the chemistry and properties of food lipids covering nomenclature and classification, extraction and analysis, and chemistry and function. Part II addresses processing and food applications including modification technologies, microbial production of lipids, crystallization behavior, chemical interesterification, purification, and encapsulation technologies. The third part covers oxidation, measurements, and antioxidants. Part IV explores the myriad interactions of lipids in nutrition and health with information on heart disease, obesity, and cancer, with a new chapter dedicated to brain lipids. Part V continues with contributions on biotechnology and biochemistry including a chapter on the metabolic engineering of edible oils.
Publisher: CRC Press
ISBN: 1498744877
Category : Medical
Languages : en
Pages : 1048
Book Description
Maintaining the high standards that made the previous editions such well-respected and widely used references, Food Lipids: Chemistry, Nutrition, and Biotechnology, Fourth Edition provides a new look at lipid oxidation and highlights recent findings and research. Always representative of the current state of lipid science, this edition provides 16 new chapters and 21 updated chapters, written by leading international experts, that reflect the latest advances in technology and studies of food lipids. New chapters Analysis of Fatty Acid Positional Distribution in Triacylglycerol Physical Characterization of Fats and Oils Processing and Modification Technologies for Edible Oils and Fats Crystallization Behavior of Fats: Effect of Processing Conditions Enzymatic Purification and Enrichment and Purification of Polyunsaturated Fatty Acids and Conjugated Linoleic Acid Isomers Microbial Lipid Production Food Applications of Lipids Encapsulation Technologies for Lipids Rethinking Lipid Oxidation Digestion, Absorption and Metabolism of Lipids Omega-3 Polyunsaturated Fatty Acids and Health Brain Lipids in Health and Disease Biotechnologically Enriched Cereals with PUFAs in Ruminant and Chicken Nutrition Enzyme-Catalyzed Production of Lipid Based Esters for the Food Industry: Emerging Process and Technology Production of Edible Oils Through Metabolic Engineering Genetically Engineered Cereals for Production of Polyunsaturated Fatty Acids The most comprehensive and relevant treatment of food lipids available, this book highlights the role of dietary fats in foods, human health, and disease. Divided into five parts, it begins with the chemistry and properties of food lipids covering nomenclature and classification, extraction and analysis, and chemistry and function. Part II addresses processing and food applications including modification technologies, microbial production of lipids, crystallization behavior, chemical interesterification, purification, and encapsulation technologies. The third part covers oxidation, measurements, and antioxidants. Part IV explores the myriad interactions of lipids in nutrition and health with information on heart disease, obesity, and cancer, with a new chapter dedicated to brain lipids. Part V continues with contributions on biotechnology and biochemistry including a chapter on the metabolic engineering of edible oils.
Omega-3 Fatty Acids
Author: Mahabaleshwar V. Hegde
Publisher: Humana Press
ISBN: 331940458X
Category : Medical
Languages : en
Pages : 611
Book Description
This volume argues for the importance of essential nutrients in our diet. Over the last two decades there has been an explosion of research on the relationship of Omega-3 fatty acids and the importance of antioxidants to human health. Expert authors discuss the importance of a diet rich in Omega-3 Fatty acids for successful human growth and development and for the prevention of disease. Chapters highlight their contribution to the prevention and amelioration of a wide range of conditions such as heart disease, diabetes, arthritis, cancer, obesity, mental health and bone health. An indispensable text designed for nutritionists, dietitians, clinicians and health related professionals, Omega-3 Fatty Acids: Keys to Nutritional Health presents a comprehensive assessment of the current knowledge about the nutritional effects of Omega-3 fatty acids and their delivery in foods.
Publisher: Humana Press
ISBN: 331940458X
Category : Medical
Languages : en
Pages : 611
Book Description
This volume argues for the importance of essential nutrients in our diet. Over the last two decades there has been an explosion of research on the relationship of Omega-3 fatty acids and the importance of antioxidants to human health. Expert authors discuss the importance of a diet rich in Omega-3 Fatty acids for successful human growth and development and for the prevention of disease. Chapters highlight their contribution to the prevention and amelioration of a wide range of conditions such as heart disease, diabetes, arthritis, cancer, obesity, mental health and bone health. An indispensable text designed for nutritionists, dietitians, clinicians and health related professionals, Omega-3 Fatty Acids: Keys to Nutritional Health presents a comprehensive assessment of the current knowledge about the nutritional effects of Omega-3 fatty acids and their delivery in foods.
Handbook of Nanoencapsulation
Author: Jasmeet Kour
Publisher: CRC Press
ISBN: 1000834069
Category : Technology & Engineering
Languages : en
Pages : 339
Book Description
Nutraceutical encapsulation envelopes protection of products from oxidative damage, controlled delivery of nanoencapsulated nutraceuticals and improved nutraceutical bioavailability as well as biological action. It is a promising technique to ensure the stabilization of such labile compounds and to protect the core ingredients from premature reactions and interactions In a comprehensive manner, the Handbook of Nanoencapsulation: Preparation, Characterization, Delivery and Safety of Nutraceutical Nanocomposites presents various nanosystems/nanocarriers, physical and chemical techniques used in encapsulation of various nutraceuticals, and the targeted delivery of various significant nutraceuticals. This book bridges the gap between academia and research as it encompasses the ubiquitous applications of nanoencapsulation technique used on significant nutraceuticals derived from plants, animals as well as microalgae. Key Features: Provides a quick and easy access to major plant, animal and microalgae derived nutraceutical ingredients Discusses nanoencapsulation techniques for protection and targeted release of various food bioactive ingredients Covers safety, bioaccessibility and multiple applications of nanoencapsulated nutraceuticals in the food industry Unveiling pivotal aspects of nanoencapsulation of significant nutraceuticals, this book is a valuable resource for researchers, food toxicologists, food scientists, nutritionists, and scientists in medicinal research.
Publisher: CRC Press
ISBN: 1000834069
Category : Technology & Engineering
Languages : en
Pages : 339
Book Description
Nutraceutical encapsulation envelopes protection of products from oxidative damage, controlled delivery of nanoencapsulated nutraceuticals and improved nutraceutical bioavailability as well as biological action. It is a promising technique to ensure the stabilization of such labile compounds and to protect the core ingredients from premature reactions and interactions In a comprehensive manner, the Handbook of Nanoencapsulation: Preparation, Characterization, Delivery and Safety of Nutraceutical Nanocomposites presents various nanosystems/nanocarriers, physical and chemical techniques used in encapsulation of various nutraceuticals, and the targeted delivery of various significant nutraceuticals. This book bridges the gap between academia and research as it encompasses the ubiquitous applications of nanoencapsulation technique used on significant nutraceuticals derived from plants, animals as well as microalgae. Key Features: Provides a quick and easy access to major plant, animal and microalgae derived nutraceutical ingredients Discusses nanoencapsulation techniques for protection and targeted release of various food bioactive ingredients Covers safety, bioaccessibility and multiple applications of nanoencapsulated nutraceuticals in the food industry Unveiling pivotal aspects of nanoencapsulation of significant nutraceuticals, this book is a valuable resource for researchers, food toxicologists, food scientists, nutritionists, and scientists in medicinal research.
Handbook of Encapsulation and Controlled Release
Author: Munmaya Mishra
Publisher: CRC Press
ISBN: 1482232340
Category : Medical
Languages : en
Pages : 1516
Book Description
The field of encapsulation, especially microencapsulation, is a rapidly growing area of research and product development. The Handbook of Encapsulation and Controlled Release covers the entire field, presenting the fundamental processes involved and exploring how to use those processes for different applications in industry. Written at a level comp
Publisher: CRC Press
ISBN: 1482232340
Category : Medical
Languages : en
Pages : 1516
Book Description
The field of encapsulation, especially microencapsulation, is a rapidly growing area of research and product development. The Handbook of Encapsulation and Controlled Release covers the entire field, presenting the fundamental processes involved and exploring how to use those processes for different applications in industry. Written at a level comp
Novel Water Treatment and Separation Methods
Author: Bharat A. Bhanvase
Publisher: CRC Press
ISBN: 1351846760
Category : Science
Languages : en
Pages : 336
Book Description
Due to increasing demand for potable and irrigation water, new scientific research is being conducted to deal with wastewater from a variety of sources. Novel Water Treatment and Separation Methods: Simulation of Chemical Processes presents a selection of research related to applications of chemical processes for wastewater treatment, separation techniques, and modeling and simulation of chemical processes. Among the many topics are: degradation of herbicide removal of anionic dye efficient sun-light driven photocatalysis removal of copper and iron using green activated carbon defluoridation of drinking water removal of calcium and magnesium from wastewater using ion exchange resins degradation of vegetable oil refinery wastewater novel separation techniques, including microwave-assisted extraction and more The volume presents selected examples in wastewater treatment, highlighting some recent examples of processes such as photocatalytic degradation, emulsion liquid membrane, novel photocatalyst for degradation of various pollutants, and adsorption of heavy metals. The book goes on to explore some novel separation techniques, such as microwave-assisted extraction, anhydrous ethanol through molecular sieve dehydration, batch extraction from leaves of Syzygium cumini (known as jambul, jambolan, jamblang or jamun), and reactive extraction. These novel separation techniques have proved be advantageous over conventional methods. The volume also looks at modeling and simulation of chemical processes, including chapters on flow characteristics of novel solid-liquid multistage circulating fluidized bed, mathematical modeling and simulation of gasketed plate heat exchangers, optimization of the adsorption capacity of prepared activated carbon, and modeling of ethanol/water separation by pervaporation, along with topics on simulation using CHEMCAD software. The diverse chapters share and encourage new ideas, methods, and applications in ongoing advances in this growing area of chemical engineering and technology. It will be a valuable resource for researchers and faculty and industrialists as well as for students.
Publisher: CRC Press
ISBN: 1351846760
Category : Science
Languages : en
Pages : 336
Book Description
Due to increasing demand for potable and irrigation water, new scientific research is being conducted to deal with wastewater from a variety of sources. Novel Water Treatment and Separation Methods: Simulation of Chemical Processes presents a selection of research related to applications of chemical processes for wastewater treatment, separation techniques, and modeling and simulation of chemical processes. Among the many topics are: degradation of herbicide removal of anionic dye efficient sun-light driven photocatalysis removal of copper and iron using green activated carbon defluoridation of drinking water removal of calcium and magnesium from wastewater using ion exchange resins degradation of vegetable oil refinery wastewater novel separation techniques, including microwave-assisted extraction and more The volume presents selected examples in wastewater treatment, highlighting some recent examples of processes such as photocatalytic degradation, emulsion liquid membrane, novel photocatalyst for degradation of various pollutants, and adsorption of heavy metals. The book goes on to explore some novel separation techniques, such as microwave-assisted extraction, anhydrous ethanol through molecular sieve dehydration, batch extraction from leaves of Syzygium cumini (known as jambul, jambolan, jamblang or jamun), and reactive extraction. These novel separation techniques have proved be advantageous over conventional methods. The volume also looks at modeling and simulation of chemical processes, including chapters on flow characteristics of novel solid-liquid multistage circulating fluidized bed, mathematical modeling and simulation of gasketed plate heat exchangers, optimization of the adsorption capacity of prepared activated carbon, and modeling of ethanol/water separation by pervaporation, along with topics on simulation using CHEMCAD software. The diverse chapters share and encourage new ideas, methods, and applications in ongoing advances in this growing area of chemical engineering and technology. It will be a valuable resource for researchers and faculty and industrialists as well as for students.
Innovative Microbial Technologies for Future and Sustainable Food Science
Author: Yu Xia
Publisher: Frontiers Media SA
ISBN: 2832528139
Category : Science
Languages : en
Pages : 143
Book Description
Publisher: Frontiers Media SA
ISBN: 2832528139
Category : Science
Languages : en
Pages : 143
Book Description
Novel Formulations and Future Trends
Author: Amit Kumar Nayak
Publisher: Elsevier
ISBN: 0323972454
Category : Medical
Languages : en
Pages : 695
Book Description
Novel Formulations and Future Trends, Volume Three in the Recent and Future Trends in Pharmaceutics series, explores aspects of pharmaceutics with an original approach focused on technology, novelties and future trends. It discusses the most important developments in drug delivery, including important and exciting areas such as mucosal, implantable, transdermal, gastroretentive, vaccine and targeted drug delivery systems. The field of pharmaceutics is highly dynamic and rapidly expanding day-by-day so it demands a variety of amplified efforts for designing and developing pharmaceutical processes and formulation strategies. This is an essential reference for researchers in academia and industry as well as advanced graduate students. New technologies are also explored including 3D printing and computational pharmaceutics. - Explores the most recent technologies in drug delivery in detail - Contains contributions from the leading experts from academia, research, industry and regulatory agencies - Includes high quality illustrations, flow charts and tables for easy understanding of concepts - Discusses practical examples and research case studies
Publisher: Elsevier
ISBN: 0323972454
Category : Medical
Languages : en
Pages : 695
Book Description
Novel Formulations and Future Trends, Volume Three in the Recent and Future Trends in Pharmaceutics series, explores aspects of pharmaceutics with an original approach focused on technology, novelties and future trends. It discusses the most important developments in drug delivery, including important and exciting areas such as mucosal, implantable, transdermal, gastroretentive, vaccine and targeted drug delivery systems. The field of pharmaceutics is highly dynamic and rapidly expanding day-by-day so it demands a variety of amplified efforts for designing and developing pharmaceutical processes and formulation strategies. This is an essential reference for researchers in academia and industry as well as advanced graduate students. New technologies are also explored including 3D printing and computational pharmaceutics. - Explores the most recent technologies in drug delivery in detail - Contains contributions from the leading experts from academia, research, industry and regulatory agencies - Includes high quality illustrations, flow charts and tables for easy understanding of concepts - Discusses practical examples and research case studies
Principles of Biomaterials Encapsulation: Volume One
Author: Farshid Sefat
Publisher: Woodhead Publishing
ISBN: 0323859437
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
Principles of Biomaterials Encapsulation: Volume One, provides an expansive and in-depth resource covering the key principles, biomaterials, strategies and techniques for encapsulation. Volume One begins with an introduction to encapsulation, with subsequent chapters dedicated to a broad range of encapsulation principles and techniques, including spray chilling and cooling, microemulsion, polymerization, extrusion, cell microencapsulation and much more. This book methodically details each technique, assessing the advantages and disadvantages of each, allowing the reader to make an informed decision when using encapsulation in their research. Principles of Biomaterials Encapsulation: Volume One enables readers to learn about the various strategies and techniques available for encapsulation of a wide selection of biomedical substrates, such as drugs, cells, hormones, growth factors and so on. Written and edited by well-versed materials scientists with extensive clinical, biomedical and regenerative medicine experience, this book offers a deeply interdisciplinary look at encapsulation in translational medicine. As such, this book will provide a useful resource to a broad readership, including those working in the fields of materials science, biomedical engineering, regenerative and translational medicine, pharmacology, chemical engineering and nutritional science. - Details the various biomaterials available for encapsulation, as well as advantages and disadvantages of conventional and contemporary biomaterials for encapsulations - Describes a broad range of applications in regenerative medicine, uniquely bringing encapsulation into the worlds of translational medicine and tissue engineering - Written and edited by well-versed materials scientists with extensive clinical, biomedical and regenerative medicine experience, offering an interdisciplinary approach
Publisher: Woodhead Publishing
ISBN: 0323859437
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
Principles of Biomaterials Encapsulation: Volume One, provides an expansive and in-depth resource covering the key principles, biomaterials, strategies and techniques for encapsulation. Volume One begins with an introduction to encapsulation, with subsequent chapters dedicated to a broad range of encapsulation principles and techniques, including spray chilling and cooling, microemulsion, polymerization, extrusion, cell microencapsulation and much more. This book methodically details each technique, assessing the advantages and disadvantages of each, allowing the reader to make an informed decision when using encapsulation in their research. Principles of Biomaterials Encapsulation: Volume One enables readers to learn about the various strategies and techniques available for encapsulation of a wide selection of biomedical substrates, such as drugs, cells, hormones, growth factors and so on. Written and edited by well-versed materials scientists with extensive clinical, biomedical and regenerative medicine experience, this book offers a deeply interdisciplinary look at encapsulation in translational medicine. As such, this book will provide a useful resource to a broad readership, including those working in the fields of materials science, biomedical engineering, regenerative and translational medicine, pharmacology, chemical engineering and nutritional science. - Details the various biomaterials available for encapsulation, as well as advantages and disadvantages of conventional and contemporary biomaterials for encapsulations - Describes a broad range of applications in regenerative medicine, uniquely bringing encapsulation into the worlds of translational medicine and tissue engineering - Written and edited by well-versed materials scientists with extensive clinical, biomedical and regenerative medicine experience, offering an interdisciplinary approach
Liposomes for Functional Foods and Nutraceuticals
Author: Sreerag Gopi
Publisher: CRC Press
ISBN: 1000565750
Category : Science
Languages : en
Pages : 325
Book Description
Liposomes have been used primarily for drug delivery, and there has been only been limited development of this technology in the food industry. This volume helps to fill that gap by focusing on the advanced trends and applications of liposomes in the nutraceuticals and functional foods industry. The volume begins by discussing the processes and protocols of formation of liposomes and the structures of liposomes produced by different methods. It then reviews their physico-chemical properties and the science of encapsulation of bioactive compounds using liposomes. It continues with an overview of liposomal methods, protocols, preparation techniques and explores the uses of liposomes as drug carriers but focuses primarily on liposomal carrier systems and technology in bioactive functional foods and nutraceuticals. The volume presents advances on liposomes as anti-tubercular and anticancer delivery systems and also discusses liposomal supplements. Liposomes for Functional Foods and Nutraceuticals: From Research to Application will be a valuable resource for those who produce lipids and those who seek to incorporate them into appropriate food products.
Publisher: CRC Press
ISBN: 1000565750
Category : Science
Languages : en
Pages : 325
Book Description
Liposomes have been used primarily for drug delivery, and there has been only been limited development of this technology in the food industry. This volume helps to fill that gap by focusing on the advanced trends and applications of liposomes in the nutraceuticals and functional foods industry. The volume begins by discussing the processes and protocols of formation of liposomes and the structures of liposomes produced by different methods. It then reviews their physico-chemical properties and the science of encapsulation of bioactive compounds using liposomes. It continues with an overview of liposomal methods, protocols, preparation techniques and explores the uses of liposomes as drug carriers but focuses primarily on liposomal carrier systems and technology in bioactive functional foods and nutraceuticals. The volume presents advances on liposomes as anti-tubercular and anticancer delivery systems and also discusses liposomal supplements. Liposomes for Functional Foods and Nutraceuticals: From Research to Application will be a valuable resource for those who produce lipids and those who seek to incorporate them into appropriate food products.