Sobolev Spaces on Metric Measure Spaces

Sobolev Spaces on Metric Measure Spaces PDF Author: Juha Heinonen
Publisher: Cambridge University Press
ISBN: 1107092345
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.

Sobolev Spaces on Metric Measure Spaces

Sobolev Spaces on Metric Measure Spaces PDF Author: Juha Heinonen
Publisher: Cambridge University Press
ISBN: 1107092345
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.

Metric In Measure Spaces

Metric In Measure Spaces PDF Author: James J Yeh
Publisher: World Scientific
ISBN: 9813200421
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
Measure and metric are two fundamental concepts in measuring the size of a mathematical object. Yet there has been no systematic investigation of this relation. The book closes this gap.

Lectures on Analysis on Metric Spaces

Lectures on Analysis on Metric Spaces PDF Author: Juha Heinonen
Publisher: Springer Science & Business Media
ISBN: 1461301319
Category : Mathematics
Languages : en
Pages : 149

Get Book Here

Book Description
The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.

Analysis and Geometry of Metric Measure Spaces

Analysis and Geometry of Metric Measure Spaces PDF Author: Galia Devora Dafni
Publisher: American Mathematical Soc.
ISBN: 0821894188
Category : Mathematics
Languages : en
Pages : 241

Get Book Here

Book Description
Contains lecture notes from most of the courses presented at the 50th anniversary edition of the Seminaire de Mathematiques Superieure in Montreal. This 2011 summer school was devoted to the analysis and geometry of metric measure spaces, and featured much interplay between this subject and the emergent topic of optimal transportation.

New Trends on Analysis and Geometry in Metric Spaces

New Trends on Analysis and Geometry in Metric Spaces PDF Author: Fabrice Baudoin
Publisher: Springer Nature
ISBN: 3030841413
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.

Topics on Analysis in Metric Spaces

Topics on Analysis in Metric Spaces PDF Author: Luigi Ambrosio
Publisher: Oxford University Press, USA
ISBN: 9780198529385
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
This book presents the main mathematical prerequisites for analysis in metric spaces. It covers abstract measure theory, Hausdorff measures, Lipschitz functions, covering theorums, lower semicontinuity of the one-dimensional Hausdorff measure, Sobolev spaces of maps between metric spaces, and Gromov-Hausdorff theory, all developed ina general metric setting. The existence of geodesics (and more generally of minimal Steiner connections) is discussed on general metric spaces and as an application of the Gromov-Hausdorff theory, even in some cases when the ambient space is not locally compact. A brief and very general description of the theory of integration with respect to non-decreasing set functions is presented following the Di Giorgi method of using the 'cavalieri' formula as the definition of the integral. Based on lecture notes from Scuola Normale, this book presents the main mathematical prerequisites for analysis in metric spaces. Supplemented with exercises of varying difficulty it is ideal for a graduate-level short course for applied mathematicians and engineers.

Measure and Category

Measure and Category PDF Author: John C. Oxtoby
Publisher: Springer Science & Business Media
ISBN: 1468493396
Category : Mathematics
Languages : en
Pages : 115

Get Book Here

Book Description
In this edition, a set of Supplementary Notes and Remarks has been added at the end, grouped according to chapter. Some of these call attention to subsequent developments, others add further explanation or additional remarks. Most of the remarks are accompanied by a briefly indicated proof, which is sometimes different from the one given in the reference cited. The list of references has been expanded to include many recent contributions, but it is still not intended to be exhaustive. John C. Oxtoby Bryn Mawr, April 1980 Preface to the First Edition This book has two main themes: the Baire category theorem as a method for proving existence, and the "duality" between measure and category. The category method is illustrated by a variety of typical applications, and the analogy between measure and category is explored in all of its ramifications. To this end, the elements of metric topology are reviewed and the principal properties of Lebesgue measure are derived. It turns out that Lebesgue integration is not essential for present purposes-the Riemann integral is sufficient. Concepts of general measure theory and topology are introduced, but not just for the sake of generality. Needless to say, the term "category" refers always to Baire category; it has nothing to do with the term as it is used in homological algebra.

Gradient Flows

Gradient Flows PDF Author: Luigi Ambrosio
Publisher: Springer Science & Business Media
ISBN: 376438722X
Category : Mathematics
Languages : en
Pages : 333

Get Book Here

Book Description
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

An Invitation to Alexandrov Geometry

An Invitation to Alexandrov Geometry PDF Author: Stephanie Alexander
Publisher: Springer
ISBN: 3030053121
Category : Mathematics
Languages : en
Pages : 95

Get Book Here

Book Description
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.

Lebesgue and Sobolev Spaces with Variable Exponents

Lebesgue and Sobolev Spaces with Variable Exponents PDF Author: Lars Diening
Publisher: Springer
ISBN: 3642183638
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.