Metal Ions in Biochemistry

Metal Ions in Biochemistry PDF Author: Pabitra Krishna Bhattacharya
Publisher: CRC Press
ISBN: 1000292665
Category : Science
Languages : en
Pages : 423

Get Book Here

Book Description
The second edition of Metal Ions in Biochemistry deals with the multidisciplinary subject of bio-inorganic chemistry, encompassing the disciplines of inorganic chemistry, biochemistry and medicine. The book deals with the role of metal ions in biochemistry, emphasising that biochemistry is mainly the chemistry of metal-biochemical complexes. Hence, the book starts with the structures of biochemicals and the identification of their metal binding sites. Thermodynamic and kinetic properties of the complexes are explained from the point of view of the nature of metal-ligand bonds. Various catalytic and structural roles of metal ions in biochemicals are discussed in detail. Features The role of Na+ and K+ in brain chemistry. The role of zinc insulin in glucose metabolism and its enhancement by vanadium and chromium compounds. Discussion of the role of zinc signals, zinc fingers and cascade effect in biochemistry. Haemoglobin synthesis and the role of vitamin B12 in it. The role of lanthanides in biochemical systems. A detailed discussion of the role of non-metals in biochemistry, a topic missing in most of the books on bio-inorganic chemistry. The study of bio-inorganic chemistry makes biochemists rethink the mechanistic pathways of biochemical reactions mediated by metal ions. There is a realisation of the role of metal complexes and inorganic ions as therapeutics such as iron in leukaemia, thalassemia and sickle cell anaemia, iodine in hypothyroidism and zinc, vanadium and chromium in glucose metabolism. The most recent realisation is of the use of zinc in the prevention and treatment of COVID-19.

Metal Ions in Biochemistry

Metal Ions in Biochemistry PDF Author: Pabitra Krishna Bhattacharya
Publisher: CRC Press
ISBN: 1000292665
Category : Science
Languages : en
Pages : 423

Get Book Here

Book Description
The second edition of Metal Ions in Biochemistry deals with the multidisciplinary subject of bio-inorganic chemistry, encompassing the disciplines of inorganic chemistry, biochemistry and medicine. The book deals with the role of metal ions in biochemistry, emphasising that biochemistry is mainly the chemistry of metal-biochemical complexes. Hence, the book starts with the structures of biochemicals and the identification of their metal binding sites. Thermodynamic and kinetic properties of the complexes are explained from the point of view of the nature of metal-ligand bonds. Various catalytic and structural roles of metal ions in biochemicals are discussed in detail. Features The role of Na+ and K+ in brain chemistry. The role of zinc insulin in glucose metabolism and its enhancement by vanadium and chromium compounds. Discussion of the role of zinc signals, zinc fingers and cascade effect in biochemistry. Haemoglobin synthesis and the role of vitamin B12 in it. The role of lanthanides in biochemical systems. A detailed discussion of the role of non-metals in biochemistry, a topic missing in most of the books on bio-inorganic chemistry. The study of bio-inorganic chemistry makes biochemists rethink the mechanistic pathways of biochemical reactions mediated by metal ions. There is a realisation of the role of metal complexes and inorganic ions as therapeutics such as iron in leukaemia, thalassemia and sickle cell anaemia, iodine in hypothyroidism and zinc, vanadium and chromium in glucose metabolism. The most recent realisation is of the use of zinc in the prevention and treatment of COVID-19.

Metals in Biochemistry

Metals in Biochemistry PDF Author: P. Harrison
Publisher: Springer
ISBN:
Category : Gardening
Languages : en
Pages : 88

Get Book Here

Book Description
In this book we present a largely biochemical look at the metals of life and their functions, which we hope will be of interest to chemists and biologists as well as biochemists. The field of 'inorganic bio chemistry' is one of rapid change. Recent developments in our know ledge of the activity of calcium, and of the iron-sulphur proteins, are two examples, and increasing attention is being paid to non-metals as well [3]. For reasons of space, we shall restrict ourselves to the normal biological activities of metals. We must ignore, on the one hand, the gross physiological effects of metal deficiency or toxicity, and on the other, the many model studies which have been stimulated by the unusual properties of metals in biological systems. Usually the synthesis of model metal compounds follows rather than anticipates the dis covery of novel biological configurations. However, such studies give us a firm basis for an understanding of the biological systems, and sometimes answer questions that cannot be tackled any other way (for instance, what is the net charge on an iron-sulphur cluster?). As a result, we can refer to new and interesting information on the metals oflife at a chemical level. We gratefully acknowledge the help of Professor P. Banks and Dr D. Fenton who have read and criticized the manuscript, though any errors or misconceptions remain our own responsibility. We thank Mr P. Elliot for preparing Fig. 5.2.

Binding, Transport and Storage of Metal Ions in Biological Cells

Binding, Transport and Storage of Metal Ions in Biological Cells PDF Author: Wolfgang Maret
Publisher: Royal Society of Chemistry
ISBN: 1782622829
Category : Science
Languages : en
Pages : 990

Get Book Here

Book Description
Metal ions play key roles in biology. Many are essential for catalysis, for electron transfer and for the fixation, sensing, and metabolism of gases. Others compete with those essential metal ions or have toxic or pharmacological effects. This book is structured around the periodic table and focuses on the control of metal ions in cells. It addresses the molecular aspects of binding, transport and storage that ensure balanced levels of the essential elements. Organisms have also developed mechanisms to deal with the non-essential metal ions. However, through new uses and manufacturing processes, organisms are increasingly exposed to changing levels of both essential and non-essential ions in new chemical forms. They may not have developed defenses against some of these forms (such as nanoparticles). Many diseases such as cancer, diabetes and neurodegeneration are associated with metal ion imbalance. There may be a deficiency of the essential metals, overload of either essential or non-essential metals or perturbation of the overall natural balance. This book is the first to comprehensively survey the molecular nature of the overall natural balance of metal ions in nutrition, toxicology and pharmacology. It is written as an introduction to research for students and researchers in academia and industry and begins with a chapter by Professor R J P Williams FRS.

Metal Ions in Biological Systems, Volume 43 - Biogeochemical Cycles of Elements

Metal Ions in Biological Systems, Volume 43 - Biogeochemical Cycles of Elements PDF Author: Astrid Sigel
Publisher: CRC Press
ISBN: 082475199X
Category : Medical
Languages : en
Pages : 352

Get Book Here

Book Description
Metal Ions in Biological Systems is devoted to increasing our understanding of the relationship between the chemistry of metals and life processes. The volumes reflect the interdisciplinary nature of bioinorganic chemistry and coordinate the efforts of researchers in the fields of biochemistry, inorganic chemistry, coordination chemis

Biological Inorganic Chemistry

Biological Inorganic Chemistry PDF Author: Robert R. Crichton
Publisher: Elsevier
ISBN: 0080556221
Category : Science
Languages : en
Pages : 383

Get Book Here

Book Description
The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment.Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters

The Alkali Metal Ions: Their Role for Life

The Alkali Metal Ions: Their Role for Life PDF Author: Astrid Sigel
Publisher: Springer
ISBN: 3319217569
Category : Science
Languages : en
Pages : 663

Get Book Here

Book Description
MILS-16 provides an up-to-date review of the impact of alkali metal ions on life. Their bioinorganic chemistry and analytical determination, the solid state structures of bio-ligand complexes and the properties of alkali metal ions in solution in the context of all kinds of biologically relevant ligands are covered, this includes proteins (enzymes) and nucleic acids (G-quadruplexes). Minerals containing sodium (Na+) and potassium (K+) are abundant in the Earth's crust, making Na+ and K+ easily available. In contrast, the alkali elements lithium (Li+), rubidium, and cesium are rare and the radioactive francium occurs only in traces. Since the intra- and extracellular, as well as the compartmental concentrations of Na+ and K+ differ significantly, homeostasis and active transport of these ions are important; this involves transporters/carriers and pore-forming ion channel proteins. Systems like Na+/K+-ATPases, H+/K+-ATPases or Na+/H+ antiporters are thoroughly discussed. The role of K+ in photosynthesis and the role of Na+ in charging the "battery of life" are pointed out. Also, the relationships between alkali metal ions and diseases (e.g., Parkinson or traumatic brain injury) are covered and the relevance of Li+ salts in medicine (pharmacology and mechanism) is reviewed. This and more is treated in an authoritative and timely manner in the 16 stimulating chapters of Volume 16, The Alkali Metal Ions: Their Role for Life, which are written by 44 internationally recognized experts from 12 nations. The impact of this vibrant research area is manifested in nearly 3000 references, over 30 tables and more than 150 illustrations (two thirds in color). MILS-16 also provides excellent information for teaching. Astrid Sigel, Helmut Sigel, and Roland K. O. Sigel have long-standing interests in Biological Inorganic Chemistry. Their research focuses on metal ion interactions with nucleotides and nucleic acids and on related topics. They edited previously 44 volumes in the series Metal Ions in Biological Systems.

Metal Ions in Biological Systems

Metal Ions in Biological Systems PDF Author: Astrid Sigel
Publisher: CRC Press
ISBN: 9780203913703
Category : Science
Languages : en
Pages : 578

Get Book Here

Book Description
Metal ions are currently used for such applications as diabetes, anti-inflammatory, rheumatoid arthritis, psychiatric, and anti-ulcer medications, using compounds of vanadium, copper and zinc, gold, lithium, and bismuth, respectively. This text explores these applications in addition to an assessment of chelation therapy, uses in environmental sciences, and the human health effects of metal ion deficiency for several elements-magnesium, calcium, zinc, and iron. Featuring contributions from 29 internationally recognized experts, this book offers a timely, authoritative look at ionic complexes in medicine.

Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic

Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic PDF Author: Peggy L. Carver
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110526980
Category : Science
Languages : en
Pages : 640

Get Book Here

Book Description
Volume 19, entitled Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic of the series Metal Ions in Life Sciences centers on the role of metal ions in clinical medicine. Metal ions are tightly regulated in human health: while essential to life, they can be toxic as well. Following an introductory chapter briefly discussing several important metal-related drugs and diseases and a chapter about drug development, the focus is fi rst on iron: its essentiality for pathogens and humans as well as its toxicity. Chelation therapy is addressed in the context of thalassemia, its relationship to neurodegenerative diseases and also the risks connected with iron administration are pointed out. A subject of intense debate is the essentiality of chromium and vanadium. For example, chromium(III) compounds are taken as a nutritional supplement by athletes and bodybuilders; in contrast, chromate, Cr(VI), is toxic and a carcinogen for humans. The benefi cial and toxic effects of manganese, cobalt, and copper on humans are discussed. The need for antiparasitic agents is emphasized as well as the clinical aspects of metal-containing antidotes for cyanide poisoning. In addition to the essential and possibly essential ones, also other metal ions play important roles in human health, causing harm (like the metalloid arsenic, lead or cadmium) or being used in diagnosis or treatment of human diseases, like gadolinium, gallium, lithium, gold, silver or platinum. The impact of this vibrant research area on metals in the clinic is provided in 14 stimulating chapters, written by internationally recognized experts from the Americas, Europe and China, and is manifested by approximately 2000 references, and about 90 illustrations and tables. Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic is an essential resource for scientists working in the wide range from pharmacology, enzymology, material sciences, analytical, organic, and inorganic biochemistry all the way through to medicine ... not forgetting that it also provides excellent information for teaching.

Biological Inorganic Chemistry

Biological Inorganic Chemistry PDF Author: Ivano Bertini
Publisher: University Science Books
ISBN: 9781891389436
Category : Science
Languages : en
Pages : 794

Get Book Here

Book Description
Part A.: Overviews of biological inorganic chemistry : 1. Bioinorganic chemistry and the biogeochemical cycles -- 2. Metal ions and proteins: binding, stability, and folding -- 3. Special cofactors and metal clusters -- 4. Transport and storage of metal ions in biology -- 5. Biominerals and biomineralization -- 6. Metals in medicine. -- Part B.: Metal ion containing biological systems : 1. Metal ion transport and storage -- 2. Hydrolytic chemistry -- 3. Electron transfer, respiration, and photosynthesis -- 4. Oxygen metabolism -- 5. Hydrogen, carbon, and sulfur metabolism -- 6. Metalloenzymes with radical intermediates -- 7. Metal ion receptors and signaling. -- Cell biology, biochemistry, and evolution: Tutorial I. -- Fundamentals of coordination chemistry: Tutorial II.

Metal Ions in Biological Systems

Metal Ions in Biological Systems PDF Author: Astrid Sigel
Publisher: CRC Press
ISBN: 9780824799847
Category : Science
Languages : en
Pages : 826

Get Book Here

Book Description
"Volume 35 covers the biological cycling of iron in oceans; the transport of iron in microorganisms, fungi, and plants; the roles and properties of siderophores; the regulation of iron transport and uptake in animals, plants, and microorganisms, and more. "