Mesoporous Material Systems for Catalysis and Drug Delivery

Mesoporous Material Systems for Catalysis and Drug Delivery PDF Author: Aylin Atakan
Publisher:
ISBN: 9789176853306
Category :
Languages : en
Pages : 94

Get Book Here

Book Description

Mesoporous Material Systems for Catalysis and Drug Delivery

Mesoporous Material Systems for Catalysis and Drug Delivery PDF Author: Aylin Atakan
Publisher:
ISBN: 9789176853306
Category :
Languages : en
Pages : 94

Get Book Here

Book Description


Mesoporous Materials for Drug Delivery and Theranostics

Mesoporous Materials for Drug Delivery and Theranostics PDF Author: Valentina Cauda
Publisher: MDPI
ISBN: 3039439391
Category : Science
Languages : en
Pages : 204

Get Book Here

Book Description
Mesoporous materials are capturing great interest thanks to their exceptional surface area, uniform and tunable pore size, ease surface functionalization, thus enabling broad series of intervention in the field of nanomedicine. Since many years, these aspects foster a deep investigation on mesoporous nanoparticles, to design and fabricate biocompatible, smart and stimuli-responsive nanotools for controlled drug- or gene-delivery, theranostics applications, in particular for cancer therapy, and tissue engineering. This Book is thus dedicated to the most recent advances in the field, collecting research papers and reviews. It spans from the synthesis and characterization of the mesoporous material, especially those made of silica, silicon and bioactive glasses, to their functionalization with smart gate-keepers, reporter molecules or targeting ligands, up to their in-vitro applications in the nanomedicine field.

Evaluating Mesoporous Materials for Potential Drug Delivery and Catalytic Applications

Evaluating Mesoporous Materials for Potential Drug Delivery and Catalytic Applications PDF Author: Madhura Joglekar
Publisher:
ISBN:
Category : Catalysis
Languages : en
Pages : 177

Get Book Here

Book Description


Development and Application of Multi-functionalized Mesoporous Silica Nanomaterials in Intracellular Drug Delivery and Heterogeneous Catalysis

Development and Application of Multi-functionalized Mesoporous Silica Nanomaterials in Intracellular Drug Delivery and Heterogeneous Catalysis PDF Author: Chih-Hsiang Tsai
Publisher:
ISBN:
Category :
Languages : en
Pages : 165

Get Book Here

Book Description


Smart Materials for Drug Delivery

Smart Materials for Drug Delivery PDF Author: Carmen Alvarez-Lorenzo
Publisher: Royal Society of Chemistry
ISBN: 1849734313
Category : Technology & Engineering
Languages : en
Pages : 419

Get Book Here

Book Description
Smart materials, which can change properties when an external stimulus is applied, can be used for the targeted drug delivery of an active molecule to a specific site in the correct dosage. Different materials such as liposomes, polymeric systems, nanomaterials and hydrogels can respond to different stimuli such as pH, temperature and light and these are all attractive for controlled release applications. With so many papers available on smart and stimuli-responsive materials for drug delivery applications it's hard to know where to start reading about this exciting topic. This two volume set brings together the recent findings in the area and provides a critical analysis of the different materials available and how they can be applied to advanced drug delivery systems. With contributions from leading experts in the field, including a foreword from distinguished scientist Nicholas Peppas, The University of Texas at Austin, USA, the book will provide both an introduction to the key areas for graduate students and new researchers in the stimuli-responsive field as well as serving as a reference for those already working on fundamental materials research or drug delivery applications.

Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection PDF Author: Daniela Rodica Radu
Publisher:
ISBN:
Category :
Languages : en
Pages : 328

Get Book Here

Book Description
The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the CTAB surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs. We utilized an ethylenediamine functional group for chelating Cu2 as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical drugs. We examined bio-friendly capping molecules such as polyamidoamine dendrimers of generations G2 to G4, to prevent the drug leaching. Next, the drug delivery system employed MSNs loaded with Doxorubicin, an anticancer drug. The results demonstrated that these nano-Trojan horses have ability to deliver Doxorubicin to cancer cells and induce their death. Finally, to demonstrate the potential of MSN as an universal cellular transmembrane nanovehicle, we anchored positively charged dendrimers on the surface of MSN and utilize them to complex cationic DNA. The p-EGFP-C1 gene-coated MSN nanocomposite was able to transfect cancer cell lines, such as human HeLa and CHO cancer cell lines. The gene carrier ability of MSNs was further proved by transfecting primary cells and cotransfecting of two different genes in cancer cell lines. In sum, MSN are versatile partners in several types of applications, as demonstrated in the 164 pages of my dissertation.

Ordered mesoporous silica COK-12: mesoscale tailoring, upscaling, continuous synthesis and application in the oxidative coupling of methane

Ordered mesoporous silica COK-12: mesoscale tailoring, upscaling, continuous synthesis and application in the oxidative coupling of methane PDF Author: Colmenares, Maria
Publisher: Universitätsverlag der TU Berlin
ISBN: 3798329885
Category : Technology & Engineering
Languages : en
Pages : 203

Get Book Here

Book Description
Ordered mesoporous silica (OMS) materials are a family of silica nanomaterials with pores ranging in size from 2 to 50 nm which are arranged periodically within the silica matrix. They have expanding applications in various fields of research, such as drug delivery, adsorption, separation and catalysis. COK-12 is an OMS produced by the soft-templating method, using the block copolymer P123 as a structure-directing agent. The synthesis takes place at room temperature under mild reaction conditions. In comparison with the most widely known OMS, the synthesis of COK-12 is more time efficient, inexpensive and environmentally friendly, yielding a material analogous to the well-known SBA-15. This thesis encompasses investigations regarding the production of the ordered mesoporous silica material (OMS) known as COK-12, in terms of upscaling of the synthesis and tailoring of the size and shape of its characteristic hexagonal pore structure. Batch upscaling of the synthesis yielded a material with nearly identical properties to that of the original COK-12. Upscaling of the COK-12 synthesis was also studied in continuous mode. The installation and operation of a continuous COK-12 production unit was carried out with the aim to determine the possibility of large-scale production of COK-12 with consistent material properties. COK-12 was produced in continuous mode by varying the time of aging of the COK-12 slurry and the flow rate of the feed streams, yielding materials with properties nearly identical to those of the original COK-12. COK-12 was used as a support for the Na2WO4-Mn/SiO2 catalyst for the oxidative coupling of methane reaction in various forms (powder, granular produced by pressing and monolithic), showing promising results comparable to the enhanced activity of the catalyst supported on the SBA-15. The advantage of using COK-12 over other OMS materials is that the facile nature of COK-12 synthesis makes it a viable candidate for industrial production of the Na2WO4-Mn/SiO2 catalyst, if paired with appropriate pelletizing and preparation method. The introduction of hexane and polypropylene glycol (PPG) as micellar swelling agents into the original COK-12 synthesis was studied in order to tailor the mesoporous structure of the system. Hexane was used as a micelle expander and as an agent to produce silica mesocellular foams, with “ink-bottle” shaped pores with a larger diameter than that of the original COK-12. By adding PPG into the synthesis, the shift of the mesostructure of COK-12 from 2D hexagonal to a multilamellar vesicular configuration was studied, resulting in the progressive formation of this type of material with increasing concentration of PPG. The flexibility of the COK-12 synthesis in terms of upscaling and tailoring of the mesostructure was examined throughout this work, with an aim to contribute to the existing and expanding knowledge regarding more versatile, sustainable and possibly industrial OMS production. Ordered Mesoporous Silica (OMS) gehört zu der Familie der Silica-Nanomaterialien mit periodisch angeordneten Mesoporen im Größenbereich zwischen 2 und 50 nm. Diese werden zunehmend in unterschiedlichen Forschungsfeldern wie Medikamentenfreisetzung, Adsorption, Separation und Katalyse eingesetzt. COK-12 ist ein OMS, das über eine Soft-Templating-Methode unter Nutzung des Blockcopolymers P123 als strukturbestimmenden Zusatz erzeugt wird. Die Synthese erfolgt bei Raumtemperatur unter milden Reaktionsbedingungen. Im Vergleich zu den am weitesten bekannten OMS-Materialien ist die Synthese von COK-12 zeiteffizient, günstig und umweltfreundlich. Dabei wird ein OMS-Material analog zu dem bereits etablierten SBA-15 erzeugt. Die vorliegende Dissertation umfasst die Synthese eines als COK-12 bekannten OMS-Materials, dem Scale-Up der Synthese sowie die Anpassung und Modifizierung der ursprünglich hexagonal-angeordneten Mesoporen bezüglich Porengrößen und Porenform. Das diskontinuierliche Scale-Up im Batchprozess führt zu nahezu identischen Materialeigenschaften im Vergleich zu dem ursprünglichen COK-12. Ein Scale-Up der COK-12-Synthese wurde zusätzlich im kontinuierlichen Prozess erprobt. Dessen Installation und Operation wurde mit dem Ziel durchgeführt, um die Möglichkeit einer Produktion von großen Mengen an COK-12 mit einheitlichen Materialeigenschaften zu validieren. Durch eine Variation der Alterungszeit als auch der Fließrate der Lösungen konnte COK-12 im kontinuierlichen Prozess mit nahezu identischen Eigenschaften wie das ursprüngliche COK-12 erzeugt werden. COK-12 wurde erfolgreich in verschiedenen Formen (Pulver, Pressgranulate und Monolithe) als Trägermaterial für Na2WO4-Mn/SiO2-Katalysatoren für die Oxidative Kopplung von Methan eingesetzt. Die resultierenden Aktivitäten ist sind vergleichbar mit denen des auf SBA-15-geträgerten Katalysators Der Vorteil der Nutzung von COK-12 im Vergleich zu anderen OMS-Materialien liegt in der vergleichsweise simplen COK-12-Synthese, weshalb es ein interessanter Kandidat für eine mögliche industrielle Produktion des Na2WO4-Mn/SiO2-Katalysators ist, wenn wenn geeignete Pelletierungs- und Herstellungsmethoden angewendet werden. Die Zugabe von Hexan und Polypropylenglykol (PPG) zur Aufweitung der Mizellen in der ursprünglichen COK-12-Synthese wurde untersucht, um die mesoporöse Struktur des Systems zu variieren. Hexan wurde eingesetzt zur Aufweitung der Mizellen und als Hilfsmittel zur Produktion mesozellulärer Silica-Schäume mit „ink-bottle“-förmigen Poren sowie vergrößertem Porendurchmesser im Vergleich zu denen des ursprünglichen COK-12. Durch die Zugabe von PPG in die Synthese verändert sich die Mesoporenstruktur der ursprünglichen hexagonalen 2D-Struktur zu einer multilamellaren vesikulären Anordnung, die mit zunehmender PPG-Konzentration verstärkt wird. Die Flexibilität der COK-12-Synthese wurde in dieser Arbeit in Bezug auf ein Scale-Up und eine Porenmodifikation weitreichend untersucht, mit dem Ziel das existierende Wissen in Bezug auf eine vielseitige, nachhaltige sowie eine potentielle Industrieproduktion der COK-12-Synthese zu entwickeln.

Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 188

Get Book Here

Book Description
The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and bio-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the cetyltrimethylammonium bromide (CTAB) surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs, We utilized an ethylenediamine functional group for chelating Cu2+ as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical drugs. We examined bio-friendly capping molecules such as polyamidoamine dendrimers of generations G2 to G4, to prevent the drug leaching. Next, the drug delivery system employed MSNs loaded with Doxorubicin, an anticancer drug. The results demonstrated that these nano-Trojan horses have ability to deliver Doxorubicin to cancer cells and induce their death. Finally, to demonstrate the potential of MSN as an universal cellular transmembrane nanovehicle, we anchored positively charged dendrimers on the surface of MSN and utilize them to complex cationic DNA. The p-EGFP-CI gene-coated MSN nanocomposite was able to transfect cancer cell lines, such as human HeLa and CHO cancer cell lines. The gene carrier ability of MSNs was further proved by transfecting primary cells and cotransfecting of two different genes in cancer cell lines. In sum, MSN are versatile partners in several types of applications.

Ordered Mesoporous Materials

Ordered Mesoporous Materials PDF Author: Dongyuan Zhao
Publisher: John Wiley & Sons
ISBN: 3527647899
Category : Science
Languages : en
Pages : 544

Get Book Here

Book Description
Mesoporous materials are a class of molecules with a large and uniform pore size, highly regular nanopores, and a large surface area. This book is devoted to all aspects and types of these materials and describes, in an in-depth and systematic manner, the step-by-step synthesis and its mechanism, as well as the characterization, morphology control, hybridization, and applications, of mesoporous molecular sieves. In so doing, it covers silicates, metal-doped silicates, nonsilicates, and organic-inorganic hybrids. Although the emphasis is on synthesis, the expert authors also discuss characterization and applications, ranging from catalysis and biochemistry to optics and the use of these materials as templates for nanomaterial synthesis. Both the fundamentals and the latest research results are covered, ensuring that this monograph serves as a reference for researchers in and newcomers to the field.

Chemistry of Silica and Zeolite-Based Materials

Chemistry of Silica and Zeolite-Based Materials PDF Author: Abderrazzak Douhal
Publisher: Elsevier
ISBN: 0128178140
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
Chemistry of Silica and Zeolite-Based Materials covers a wide range of topics related to silica-based materials from design and synthesis to applications in different fields of science and technology. Since silica is transparent and inert to the light, it is a very attractive host material for constructing artificial photosynthesis systems. As an earth-abundant oxide, silica is an ideal and basic material for application of various oxides, and the science and technology of silica-based materials are fundamentally important for understanding other oxide-based materials. The book examines nanosolvation and confined molecules in silica hosts, catalysis and photocatalysis, photonics, photosensors, photovoltaics, energy, environmental sciences, drug delivery, and health. Written by a highly experienced and internationally renowned team from around the world, Chemistry of Silica and Zeolite-Based Materials is ideal for chemists, materials scientists, chemical engineers, physicists, biologists, biomedical sciences, environmental scientists, toxicologists, and pharma scientists. --- "The enormous versatility of silica for building a large variety of materials with unique properties has been very well illustrated in this book.... The reader will be exposed to numerous potential applications of these materials – from photocatalytic, optical and electronic applications, to chemical reactivity in confined spaces and biological applications. This book is of clear interest not only to PhD students and postdocs, but also to researchers in this field seeking an understanding of the possible applications of meso and microporous silica-derived materials." - Professor Avelino Corma, Institute of Chemical Technology (ITQ-CSIC) and Polytechnical University of Valencia, Spain Discusses the most important advances in various fields using silica materials, including nanosolvation and confined molecules in silica hosts, catalysis and photocatalysis, and other topics Written by a global team of experts from a variety of science and technology disciplines Ideal resource for chemists, materials scientists, and chemical engineers working with oxide-based materials